Suppr超能文献

针对炎症和疼痛的合理设计的多靶标药物。

Rationally designed multitarget agents against inflammation and pain.

机构信息

Department of Entomology and Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616-8584, USA.

出版信息

Curr Med Chem. 2013;20(13):1783-99. doi: 10.2174/0929867311320130013.

Abstract

Arachidonic acid (ARA) undergoes enzyme-mediated oxidative metabolism, resulting in the formation of a number of biologically active metabolites. For over a century, these biochemical transformations have been the target of numerous pharmacological drugs for inflammation and pain. In particular, non-steroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase-2 (COX-2) selective inhibitors (coxibs) are widely used in the treatment of inflammation and pain. However, gastrointestinal (GI) and cardiovascular adverse effects of NSAIDs and coxibs, and recent findings demonstrating that there are significant risks from the disruption of oxylipin levels when pharmacologically inhibiting a single ARA cascade metabolic pathway, have led to studies involving the simultaneous inhibition of multiple pathways in ARA cascade. These studies suggest that multitarget inhibition represents a new and valuable option to enhance efficacy or reduce side-effects in the treatment of inflammation and pain. This review focuses on the crosstalk within the three pathways of the ARA cascade (cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450)), and summarizes the current and future approaches of multitarget inhibitors for the treatment of eicosanoid driven inflammation and pain.

摘要

花生四烯酸(ARA)经过酶介导的氧化代谢,形成许多生物活性代谢物。一个多世纪以来,这些生化转化一直是许多用于炎症和疼痛的药理学药物的目标。特别是,非甾体抗炎药(NSAIDs)和环氧化酶-2(COX-2)选择性抑制剂(coxibs)广泛用于治疗炎症和疼痛。然而,NSAIDs 和 coxibs 的胃肠道(GI)和心血管不良影响,以及最近的发现表明,当药理学抑制单一 ARA 级联代谢途径时,氧化脂质水平的破坏存在重大风险,这导致了涉及 ARA 级联中多个途径的同时抑制的研究。这些研究表明,多靶点抑制代表了一种新的有价值的选择,可以提高炎症和疼痛治疗的疗效或降低副作用。这篇综述重点关注 ARA 级联的三个途径(环氧化酶(COX)、脂氧合酶(LOX)和细胞色素 P450(CYP450))内的串扰,并总结了用于治疗类花生酸驱动的炎症和疼痛的多靶点抑制剂的现状和未来方法。

相似文献

1
Rationally designed multitarget agents against inflammation and pain.
Curr Med Chem. 2013;20(13):1783-99. doi: 10.2174/0929867311320130013.
2
Recent development in the field of dual COX / 5-LOX inhibitors.
Mini Rev Med Chem. 2004 Aug;4(6):633-8. doi: 10.2174/1389557043403747.
5
Dual acting anti-inflammatory drugs: a reappraisal.
Pharmacol Res. 2001 Dec;44(6):437-50. doi: 10.1006/phrs.2001.0872.
6
Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade.
Biochem Pharmacol. 2018 Dec;158:161-173. doi: 10.1016/j.bcp.2018.10.007. Epub 2018 Oct 11.
7
Inhibitors of the arachidonic acid cascade: interfering with multiple pathways.
Basic Clin Pharmacol Toxicol. 2014 Jan;114(1):83-91. doi: 10.1111/bcpt.12134. Epub 2013 Oct 11.
8
Anti-inflammatory drugs in the 21st century.
Subcell Biochem. 2007;42:3-27. doi: 10.1007/1-4020-5688-5_1.
9
Multiple target-centric strategy to tame inflammation.
Future Med Chem. 2017 Aug;9(12):1361-1376. doi: 10.4155/fmc-2017-0050. Epub 2017 Aug 3.
10
Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks.
Curr Med Chem. 2002 May;9(10):1033-43. doi: 10.2174/0929867024606650.

引用本文的文献

1
Discovery and Profiling of New Multimodal Phenylglycinamide Derivatives as Potent Antiseizure and Antinociceptive Drug Candidates.
ACS Chem Neurosci. 2024 Sep 4;15(17):3228-3256. doi: 10.1021/acschemneuro.4c00438. Epub 2024 Aug 21.
4
Discovery of the sEH Inhibitor Epoxykynin as a Potent Kynurenine Pathway Modulator.
J Med Chem. 2024 Mar 28;67(6):4691-4706. doi: 10.1021/acs.jmedchem.3c02245. Epub 2024 Mar 12.
10
Using Experimental Models to Decipher the Effects of Acetaminophen and NSAIDs on Reproductive Development and Health.
Front Toxicol. 2022 Mar 8;4:835360. doi: 10.3389/ftox.2022.835360. eCollection 2022.

本文引用的文献

1
Dual-target virtual screening by pharmacophore elucidation and molecular shape filtering.
ACS Med Chem Lett. 2012 Jan 17;3(2):155-8. doi: 10.1021/ml200286e. eCollection 2012 Feb 9.
2
Dynamic modeling of human 5-lipoxygenase-inhibitor interactions helps to discover novel inhibitors.
J Med Chem. 2012 Mar 22;55(6):2597-605. doi: 10.1021/jm201497k. Epub 2012 Mar 1.
3
Long-chain fatty acids and inflammation.
Proc Nutr Soc. 2012 May;71(2):284-9. doi: 10.1017/S0029665112000067. Epub 2012 Feb 28.
4
Epoxides and soluble epoxide hydrolase in cardiovascular physiology.
Physiol Rev. 2012 Jan;92(1):101-30. doi: 10.1152/physrev.00021.2011.
5
Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis.
Chem Rev. 2011 Oct 12;111(10):5821-65. doi: 10.1021/cr2002992. Epub 2011 Sep 27.
6
Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease.
Chem Rev. 2011 Oct 12;111(10):5866-98. doi: 10.1021/cr200246d. Epub 2011 Sep 22.
8
Soluble epoxide hydrolase inhibition, epoxygenated fatty acids and nociception.
Prostaglandins Other Lipid Mediat. 2011 Nov;96(1-4):76-83. doi: 10.1016/j.prostaglandins.2011.08.001. Epub 2011 Aug 10.
10
Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):9038-43. doi: 10.1073/pnas.1103482108. Epub 2011 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验