Huang Yuan, Chen Kun, Deng Youjin, Jacobsen Jesper Lykke, Kotecký Roman, Salas Jesús, Sokal Alan D, Swart Jan M
Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012136. doi: 10.1103/PhysRevE.87.012136. Epub 2013 Jan 24.
We exhibit infinite families of two-dimensional lattices (some of which are triangulations or quadrangulations of the plane) on which the q-state Potts antiferromagnet has a finite-temperature phase transition at arbitrarily large values of q. This unexpected result is proven rigorously by using a Peierls argument to measure the entropic advantage of sublattice long-range order. Additional numerical data are obtained using transfer matrices, Monte Carlo simulation, and a high-precision graph-theoretic method.
我们展示了二维晶格的无穷族(其中一些是平面的三角剖分或四边形剖分),在这些晶格上,q 态 Potts 反铁磁体在任意大的 q 值下都有有限温度相变。通过使用 Peierls 论证来衡量子晶格长程序的熵优势,严格证明了这一意外结果。还使用转移矩阵、蒙特卡罗模拟和高精度图论方法获得了额外的数值数据。