Suppr超能文献

全株和器官水平的氮同位素分馏表明,拟南芥 knockout 系中同化、通量和氮分配的分配发生了改变。

Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana.

机构信息

Department of Forest Sciences, University of British Columbia, 2424 Main Mall, V6T1Z4, Vancouver, BC, Canada.

出版信息

Physiol Plant. 2013 Oct;149(2):249-59. doi: 10.1111/ppl.12038. Epub 2013 Mar 25.

Abstract

The nitrogen isotope composition (δ¹⁵N) of plants has potential to provide time-integrated information on nitrogen uptake, assimilation and allocation. Here, we take advantage of existing T-DNA and γ-ray mutant lines of Arabidopsis thaliana to modify whole-plant and organ-level nitrogen isotope composition. Nitrate reductase 2 (nia2), nitrate reductase 1 (nia1) and nitrate transporter (nrt2) mutant lines and the Col-0 wild type were grown hydroponically under steady-state NO₃⁻ conditions at either 100 or 1000 μM NO₃⁻ for 35 days. There were no significant effects on whole-plant discrimination and growth in the assimilatory mutants (nia2 and nia1). Pronounced root vs leaf differences in δ¹⁵N, however, indicated that nia2 had an increased proportion of nitrogen assimilation of NO₃⁻ in leaves while nia1 had an increased proportion of assimilation in roots. These observations are consistent with reported ratios of nia1 and nia2 gene expression levels in leaves and roots. Greater whole-plant discrimination in nrt2 indicated an increase in efflux of unassimilated NO₃⁻ back to the rooting medium. This phenotype was associated with an overall reduction in NO₃⁻ uptake, assimilation and decreased partitioning of NO₃⁻ assimilation to the leaves, presumably because of decreased symplastic intercellular movement of NO₃⁻ in the root. Although the results were more varied than expected, they are interpretable within the context of expected mechanisms of whole-plant and organ-level nitrogen isotope discrimination that indicate variation in nitrogen fluxes, assimilation and allocation between lines.

摘要

植物的氮同位素组成(δ¹⁵N)具有提供氮吸收、同化和分配时间综合信息的潜力。在这里,我们利用拟南芥的现有 T-DNA 和γ射线突变体系来改变整株植物和器官水平的氮同位素组成。硝酸盐还原酶 2(nia2)、硝酸盐还原酶 1(nia1)和硝酸盐转运蛋白(nrt2)突变体系和 Col-0 野生型在稳态 NO₃⁻条件下进行水培,NO₃⁻浓度分别为 100 或 1000 μM,培养 35 天。在同化突变体(nia2 和 nia1)中,对整株植物的分辨力和生长没有显著影响。然而,根与叶之间 δ¹⁵N 的明显差异表明,nia2 叶片中硝酸盐同化的氮比例增加,而 nia1 根中硝酸盐同化的氮比例增加。这些观察结果与报告的 nia1 和 nia2 基因在叶片和根中的表达水平比值一致。nrt2 中更大的整株植物分辨力表明未同化的 NO₃⁻向生根介质中回流的通量增加。这种表型与硝酸盐摄取、同化的总体减少以及硝酸盐同化向叶片分配减少有关,这可能是由于根中硝酸盐的共质体细胞间运动减少。尽管结果比预期的更加多样化,但它们可以根据整株植物和器官水平氮同位素分辨的预期机制来解释,这些机制表明了不同氮通量、同化和分配之间的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验