Suppr超能文献

统计上位性网络降低了搜索三位点遗传模型的计算复杂性。

Statistical epistasis networks reduce the computational complexity of searching three-locus genetic models.

作者信息

Hu Ting, Andrew Angeline S, Karagas Margaret R, Moore Jason H

机构信息

Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.

出版信息

Pac Symp Biocomput. 2013:397-408.

Abstract

The rapid development of sequencing technologies makes thousands to millions of genetic attributes available for testing associations with various biological traits. Searching this enormous high-dimensional data space imposes a great computational challenge in genome-wide association studies. We introduce a network-based approach to supervise the search for three-locus models of disease susceptibility. Such statistical epistasis networks (SEN) are built using strong pairwise epistatic interactions and provide a global interaction map to search for higher-order interactions by prioritizing genetic attributes clustered together in the networks. Applying this approach to a population-based bladder cancer dataset, we found a high susceptibility three-way model of genetic variations in DNA repair and immune regulation pathways, which holds great potential for studying the etiology of bladder cancer with further biological validations. We demonstrate that our SEN-supervised search is able to find a small subset of three-locus models with significantly high associations at a substantially reduced computational cost.

摘要

测序技术的快速发展使得数以千计到数百万计的遗传属性可用于测试与各种生物学性状的关联。在全基因组关联研究中,搜索这个巨大的高维数据空间带来了巨大的计算挑战。我们引入一种基于网络的方法来指导对疾病易感性三基因座模型的搜索。这种统计上位性网络(SEN)利用强大的成对上位性相互作用构建,并提供一个全局相互作用图谱,通过对网络中聚集在一起的遗传属性进行优先级排序来搜索高阶相互作用。将这种方法应用于一个基于人群的膀胱癌数据集,我们发现了一个DNA修复和免疫调节途径中遗传变异的高易感性三基因座模型,通过进一步的生物学验证,该模型在研究膀胱癌病因方面具有巨大潜力。我们证明,我们的SEN指导搜索能够以显著降低的计算成本找到一小部分具有显著高关联性的三基因座模型。

相似文献

4
Enabling personal genomics with an explicit test of epistasis.
Pac Symp Biocomput. 2010:327-36. doi: 10.1142/9789814295291_0035.
5
WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
BMC Bioinformatics. 2018 Jul 31;19(1):277. doi: 10.1186/s12859-018-2291-2.
7
A system-level pathway-phenotype association analysis using synthetic feature random forest.
Genet Epidemiol. 2014 Apr;38(3):209-19. doi: 10.1002/gepi.21794. Epub 2014 Feb 17.
8
Prioritizing tests of epistasis through hierarchical representation of genomic redundancies.
Nucleic Acids Res. 2017 Aug 21;45(14):e131. doi: 10.1093/nar/gkx505.
9
AprioriGWAS, a new pattern mining strategy for detecting genetic variants associated with disease through interaction effects.
PLoS Comput Biol. 2014 Jun 5;10(6):e1003627. doi: 10.1371/journal.pcbi.1003627. eCollection 2014 Jun.

引用本文的文献

2
How to increase our belief in discovered statistical interactions via large-scale association studies?
Hum Genet. 2019 Apr;138(4):293-305. doi: 10.1007/s00439-019-01987-w. Epub 2019 Mar 6.
3
EpistasisRank and EpistasisKatz: interaction network centrality methods that integrate prior knowledge networks.
Bioinformatics. 2019 Jul 1;35(13):2329-2331. doi: 10.1093/bioinformatics/bty965.
5
CINOEDV: a co-information based method for detecting and visualizing n-order epistatic interactions.
BMC Bioinformatics. 2016 May 17;17(1):214. doi: 10.1186/s12859-016-1076-8.
6
Functional dyadicity and heterophilicity of gene-gene interactions in statistical epistasis networks.
BioData Min. 2015 Dec 21;8:43. doi: 10.1186/s13040-015-0062-4. eCollection 2015.
8
Heuristic identification of biological architectures for simulating complex hierarchical genetic interactions.
Genet Epidemiol. 2015 Jan;39(1):25-34. doi: 10.1002/gepi.21865. Epub 2014 Nov 13.
9
Practical aspects of genome-wide association interaction analysis.
Hum Genet. 2014 Nov;133(11):1343-58. doi: 10.1007/s00439-014-1480-y. Epub 2014 Aug 28.

本文引用的文献

1
IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W484-90. doi: 10.1093/nar/gks458. Epub 2012 Jun 7.
3
Bioinformatics challenges for genome-wide association studies.
Bioinformatics. 2010 Feb 15;26(4):445-55. doi: 10.1093/bioinformatics/btp713. Epub 2010 Jan 6.
4
Finding the missing heritability of complex diseases.
Nature. 2009 Oct 8;461(7265):747-53. doi: 10.1038/nature08494.
6
Epistasis and its implications for personal genetics.
Am J Hum Genet. 2009 Sep;85(3):309-20. doi: 10.1016/j.ajhg.2009.08.006.
7
Detecting gene-gene interactions that underlie human diseases.
Nat Rev Genet. 2009 Jun;10(6):392-404. doi: 10.1038/nrg2579.
8
Genomewide association studies and human disease.
N Engl J Med. 2009 Apr 23;360(17):1759-68. doi: 10.1056/NEJMra0808700. Epub 2009 Apr 15.
9
Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis.
PLoS Genet. 2009 Mar;5(3):e1000432. doi: 10.1371/journal.pgen.1000432. Epub 2009 Mar 20.
10
Bladder cancer SNP panel predicts susceptibility and survival.
Hum Genet. 2009 Jun;125(5-6):527-39. doi: 10.1007/s00439-009-0645-6. Epub 2009 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验