Suppr超能文献

统计上位性网络中基因-基因相互作用的功能二元性和异亲性

Functional dyadicity and heterophilicity of gene-gene interactions in statistical epistasis networks.

作者信息

Hu Ting, Andrew Angeline S, Karagas Margaret R, Moore Jason H

机构信息

Department of Computer Science, Memorial University, St. John's, NL, Canada.

Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH USA.

出版信息

BioData Min. 2015 Dec 21;8:43. doi: 10.1186/s13040-015-0062-4. eCollection 2015.

Abstract

BACKGROUND

The interaction effect among multiple genetic factors, i.e. epistasis, plays an important role in explaining susceptibility on common human diseases and phenotypic traits. The uncertainty over the number of genetic attributes involved in interactions poses great challenges in genetic association studies and calls for advanced bioinformatics methodologies. Network science has gained popularity in modeling genetic interactions thanks to its structural characterization of large numbers of entities and their complex relationships. However, little has been done on functionally interpreting statistically inferred epistatic interactions using networks.

RESULTS

In this study, we propose to characterize gene functional properties in the context of interaction network structure. We used Gene Ontology (GO) to functionally annotate genes as vertices in a statistical epistasis network, and quantitatively characterize the correlation between the distribution of gene functional properties and the network structure by measuring dyadicity and heterophilicity of each functional category in the network. These two parameters quantify whether genetic interactions tend to occur more frequently for genes from the same functional category, i.e. dyadic effect, or more frequently for genes from across different functional categories, i.e. heterophilic effect.

CONCLUSIONS

By applying this framework to a population-based bladder cancer dataset, we were able to identify several GO categories that have significant dyadicity or heterophilicity associated with bladder cancer susceptibility. Thus, our informatics framework suggests a new methodology for embedding functional analysis in network modeling of statistical epistasis in genetic association studies.

摘要

背景

多个遗传因素之间的相互作用效应,即上位性,在解释常见人类疾病易感性和表型特征方面起着重要作用。相互作用中涉及的遗传属性数量的不确定性给遗传关联研究带来了巨大挑战,需要先进的生物信息学方法。网络科学因其对大量实体及其复杂关系的结构表征,在遗传相互作用建模中受到欢迎。然而,在使用网络对统计推断的上位性相互作用进行功能解释方面做得很少。

结果

在本研究中,我们建议在相互作用网络结构的背景下表征基因功能特性。我们使用基因本体论(GO)对基因进行功能注释,将其作为统计上位性网络中的顶点,并通过测量网络中每个功能类别的二元性和异质性,定量表征基因功能特性分布与网络结构之间的相关性。这两个参数量化了遗传相互作用是否更倾向于在来自相同功能类别的基因之间更频繁地发生,即二元效应,或者在来自不同功能类别的基因之间更频繁地发生,即异质效应。

结论

通过将此框架应用于基于人群的膀胱癌数据集,我们能够识别出几个与膀胱癌易感性相关的具有显著二元性或异质性的GO类别。因此,我们的信息学框架提出了一种在遗传关联研究的统计上位性网络建模中嵌入功能分析的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a5b/4687149/c69ad209c524/13040_2015_62_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验