Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
J Appl Physiol (1985). 2013 Apr;114(8):1085-93. doi: 10.1152/japplphysiol.01465.2012. Epub 2013 Feb 21.
Intravascular adenosine triphosphate (ATP) evokes vasodilation and is implicated in the regulation of skeletal muscle blood flow during exercise. Mechanical stresses to erythrocytes and endothelial cells stimulate ATP release in vitro. How mechanical effects of muscle contractions contribute to increased plasma ATP during exercise is largely unexplored. We tested the hypothesis that simulated mechanical effects of muscle contractions increase ATP and ATP effluent in vivo, independent of changes in tissue metabolic demand, and further increase plasma ATP when superimposed with mild-intensity exercise. In young healthy adults, we measured forearm blood flow (FBF) (Doppler ultrasound) and plasma ATP (luciferin-luciferase assay), then calculated forearm ATP effluent (FBF×ATP) during rhythmic forearm compressions (RFC) via a blood pressure cuff at three graded pressures (50, 100, and 200 mmHg; Protocol 1; n = 10) and during RFC at 100 mmHg, 5% maximal voluntary contraction rhythmic handgrip exercise (RHG), and combined RFC + RHG (Protocol 2; n = 10). ATP increased from rest with each cuff pressure (range 144-161 vs. 64 ± 13 nmol/l), and ATP effluent was graded with pressure. In Protocol 2, ATP increased in each condition compared with rest (RFC: 123 ± 33; RHG: 51 ± 9; RFC + RHG: 96 ± 23 vs. Mean Rest: 42 ± 4 nmol/l; P < 0.05), and ATP effluent was greatest with RFC + RHG (RFC: 5.3 ± 1.4; RHG: 5.3 ± 1.1; RFC + RHG: 11.6 ± 2.7 vs. Mean Rest: 1.2 ± 0.1 nmol/min; P < 0.05). We conclude that the mechanical effects of muscle contraction can 1) independently elevate intravascular ATP draining quiescent skeletal muscle without changes in local metabolism and 2) further augment intravascular ATP during mild exercise associated with increases in metabolism and local deoxygenation; therefore, it is likely one stimulus for increasing intravascular ATP during exercise in humans.
血管内三磷酸腺苷(ATP)可引起血管扩张,并参与运动时骨骼肌血流的调节。体外研究表明,红细胞和内皮细胞受到机械应力刺激会释放 ATP。肌肉收缩的机械效应如何导致运动期间血浆 ATP 增加,在很大程度上仍不清楚。我们假设,模拟肌肉收缩的机械效应可独立于组织代谢需求的变化增加静脉内 ATP 和 ATP 流出量,当与低强度运动叠加时,进一步增加血浆 ATP。在年轻健康成年人中,我们通过超声多普勒测量前臂血流量(FBF)和血浆 ATP(荧光素-荧光素酶测定法),然后在三个分级压力(50、100 和 200 mmHg;方案 1;n = 10)下通过血压袖带测量节律性前臂压缩(RFC)期间的前臂 ATP 流出量(FBF×ATP),并在 100 mmHg、5%最大自主收缩节律性手握运动(RHG)和联合 RFC + RHG(方案 2;n = 10)下测量。与静息状态相比,ATP 在每个袖带压力下均增加(范围 144-161 与 64 ± 13 nmol/l),且 ATP 流出量与压力呈分级关系。在方案 2 中,与静息相比,ATP 在每种情况下均增加(RFC:123 ± 33;RHG:51 ± 9;RFC + RHG:96 ± 23 与 Mean Rest:42 ± 4 nmol/l;P < 0.05),且 RFC + RHG 时 ATP 流出量最大(RFC:5.3 ± 1.4;RHG:5.3 ± 1.1;RFC + RHG:11.6 ± 2.7 与 Mean Rest:1.2 ± 0.1 nmol/min;P < 0.05)。我们的结论是,肌肉收缩的机械效应可 1)独立于局部代谢变化而增加静息骨骼肌中的血管内 ATP 流出量,2)在与代谢和局部缺氧增加相关的低强度运动期间进一步增加血管内 ATP;因此,它很可能是运动期间增加人体血管内 ATP 的一个刺激因素。