Chugai Pharmaceutical Co., Ltd., API Process Development Department (Bio Technology), 5-5-1, Ukima, Kita-ku, Tokyo 115-8543, Japan.
Biotechnol Bioeng. 2013 Aug;110(8):2208-15. doi: 10.1002/bit.24881. Epub 2013 Mar 16.
Innovation in monoclonal antibody (mAb) production continues to be driven by cell engineering strategies to increase yield and improve product quality. In a previous study, to investigate the effectiveness of transporter overexpression strategies, we prepared a taurine transporter-overexpressing host cell line (DXB11/TAUT) that produced a higher proportion of high-mAb-titer strains than did the parent host cell line. In the current study, we selected a single DXB11/TAUT/mAb1 strain that remained viable for longer (up to 1 month) under common fed-batch culture conditions, and the improvement in viability could be attributed to its improved metabolic properties. It was also more productive (up to >100 pg/cell/day) and yielded more mAb1 (up to 8.1 g/L/31 days) than the parent cell line, and the mAb1 it produced was of comparable quality. These results suggested that this host cell engineering strategy has unique potential for the improvement of mAb-producing Chinese hamster ovary (CHO) cells; for example, it may be appropriate for high cell density perfusion culture. TAUT-overexpressing cell lines rapidly accumulated the byproduct alanine, and our challenge in the present study was to apply a strategy for modulating cell metabolism to utilize this byproduct to achieve a high mAb yield in a shorter culture period. To accomplish this, we genetically modified the DXB11/TAUT/mAb1 strain to cooverexpress alanine aminotransferase 1 (ALT1). The resulting DXB11/TAUT/mAb1/ALT1 cooverexpressing strain gave a higher mAb yield in a shorter culture period (5.9 g/L/14 days). It is usually difficult to drive the overexpression of two functional genes while balancing competing goals. However, forced cooverexpression of TAUT and ALT1 in our DXB11/TAUT/mAb1/ALT1 strain resulted in a higher proliferation than the DXB11/TAUT/mAb1 strain, with an ideal balance between cell viability and productivity. Therefore, we have demonstrated a strategy capable of achieving an optimum balance among the goals of cell viability, productivity, and proliferative capacity.
单克隆抗体(mAb)生产的创新继续受到细胞工程策略的推动,以提高产量和改善产品质量。在之前的研究中,为了研究转运蛋白过表达策略的有效性,我们制备了一种牛磺酸转运蛋白过表达的宿主细胞系(DXB11/TAUT),该细胞系比亲本宿主细胞系产生更高比例的高 mAb 滴度菌株。在本研究中,我们选择了一株在常见补料分批培养条件下存活时间更长(长达 1 个月)的 DXB11/TAUT/mAb1 单株,其生存能力的提高可归因于其改善的代谢特性。它的生产效率也更高(高达 >100pg/细胞/天),产生的 mAb1 也更多(高达 8.1g/L/31 天),比亲本细胞系产生的 mAb1 质量相当。这些结果表明,这种宿主细胞工程策略具有提高 mAb 产生的中国仓鼠卵巢(CHO)细胞的独特潜力;例如,它可能适用于高细胞密度灌注培养。TAUT 过表达细胞系迅速积累副产物丙氨酸,我们在本研究中的挑战是应用一种调节细胞代谢的策略来利用这种副产物,以在更短的培养周期内获得高 mAb 产量。为了实现这一目标,我们对 DXB11/TAUT/mAb1 菌株进行了基因修饰,使其共表达丙氨酸氨基转移酶 1(ALT1)。由此产生的 DXB11/TAUT/mAb1/ALT1 共表达菌株在更短的培养周期(5.9g/L/14 天)内产生了更高的 mAb 产量。通常,在平衡竞争目标的同时,很难驱动两个功能基因的过表达。然而,在我们的 DXB11/TAUT/mAb1/ALT1 菌株中强制共表达 TAUT 和 ALT1 导致细胞增殖高于 DXB11/TAUT/mAb1 菌株,细胞活力和生产力之间达到理想的平衡。因此,我们已经证明了一种能够在细胞活力、生产力和增殖能力的目标之间实现最佳平衡的策略。