School of Natural Sciences, Linnaeus University, Kalmar, Sweden.
Environ Toxicol Chem. 2013 Apr;32(5):1069-76. doi: 10.1002/etc.2167. Epub 2013 Mar 29.
In cases in which experimental data on chemical-specific input parameters are lacking, chemical regulations allow the use of alternatives to testing, such as in silico predictions based on quantitative structure-property relationships (QSPRs). Such predictions are often given as point estimates; however, little is known about the extent to which uncertainties associated with QSPR predictions contribute to uncertainty in fate assessments. In the present study, QSPR-induced uncertainty in overall persistence (POV ) and long-range transport potential (LRTP) was studied by integrating QSPRs into probabilistic assessments of five polybrominated diphenyl ethers (PBDEs), using the multimedia fate model Simplebox. The uncertainty analysis considered QSPR predictions of the fate input parameters' melting point, water solubility, vapor pressure, organic carbon-water partition coefficient, hydroxyl radical degradation, biodegradation, and photolytic degradation. Uncertainty in POV and LRTP was dominated by the uncertainty in direct photolysis and the biodegradation half-life in water. However, the QSPRs developed specifically for PBDEs had a relatively low contribution to uncertainty. These findings suggest that the reliability of the ranking of PBDEs on the basis of POV and LRTP can be substantially improved by developing better QSPRs to estimate degradation properties. The present study demonstrates the use of uncertainty and sensitivity analyses in nontesting strategies and highlights the need for guidance when compounds fall outside the applicability domain of a QSPR.
在缺乏针对特定化学物质输入参数的实验数据的情况下,化学法规允许使用替代测试方法,例如基于定量结构-性质关系(QSPR)的计算机预测。此类预测通常给出单点估计值;然而,人们对与 QSPR 预测相关的不确定性在归宿评估中的不确定性程度知之甚少。在本研究中,通过将 QSPR 集成到使用多媒体归宿模型 Simplebox 对 5 种多溴二苯醚(PBDE)进行的概率评估中,研究了整体持久性(POV)和长距离传输潜力(LRTP)的 QSPR 诱导不确定性。不确定性分析考虑了归宿输入参数熔点、水溶解度、蒸气压、有机碳-水分配系数、羟基自由基降解、生物降解和光解降解的 QSPR 预测。POV 和 LRTP 的不确定性主要由直接光解和水中生物降解半衰期的不确定性决定。然而,专门为 PBDE 开发的 QSPR 对不确定性的贡献相对较低。这些发现表明,通过开发更好的 QSPR 来估计降解特性,可以大大提高基于 POV 和 LRTP 对 PBDE 进行排序的可靠性。本研究展示了不确定性和敏感性分析在非测试策略中的应用,并强调了当化合物超出 QSPR 的适用性域时需要指导。