Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE 106 91 Stockholm, Sweden; IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm, Sweden.
IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm, Sweden.
Sci Total Environ. 2015 Aug 15;524-525:416-26. doi: 10.1016/j.scitotenv.2015.02.106. Epub 2015 Apr 28.
Several groups of flame retardants (FRs) have entered the market in recent years as replacements for polybrominated diphenyl ethers (PBDEs), but little is known about their physical-chemical properties or their environmental transport and fate. Here we make best estimates of the physical-chemical properties and undertake evaluative modelling assessments (indoors and outdoors) for 35 so-called 'novel' and 'emerging' brominated flame retardants (BFRs) and 22 organophosphorus flame retardants (OPFRs). A QSPR (Quantitative Structure-Property Relationship) based technique is used to reduce uncertainty in physical-chemical properties and to aid property selection for modelling, but it is evident that more, high quality property data are required for improving future assessments. Evaluative modelling results show that many of the alternative FRs, mainly alternative BFRs and some of the halogenated OPFRs, behave similarly to the PBDEs both indoors and outdoors. These alternative FRs exhibit high overall persistence (Pov), long-range transport potential (LRTP) and POP-like behaviour and on that basis cannot be regarded as suitable replacements to PBDEs. A group of low molecular weight alternative BFRs and non-halogenated OPFRs show a potentially better environmental performance based on Pov and LRTP metrics. Results must be interpreted with caution though since there are significant uncertainties and limited data to allow for thorough model evaluation. Additional environmental parameters such as toxicity and bioaccumulative potential as well as functionality issues should be considered in an industrial substitution strategy.
近年来,有几类阻燃剂(FRs)作为多溴二苯醚(PBDEs)的替代品进入市场,但人们对它们的物理化学性质及其环境迁移和归宿知之甚少。在这里,我们对 35 种所谓的“新型”和“新兴”溴化阻燃剂(BFRs)和 22 种有机磷阻燃剂(OPFRs)进行了最佳物理化学性质估计,并进行了室内外评估模型评估。使用基于 QSPR(定量结构-性质关系)的技术来减少物理化学性质的不确定性,并为建模选择性质,但显然需要更多高质量的性质数据来改进未来的评估。评估模型结果表明,许多替代阻燃剂,主要是替代 BFRs 和一些卤化 OPFRs,在室内和室外都与 PBDEs 具有相似的行为。这些替代阻燃剂表现出高的总持久性(Pov)、长距离迁移潜力(LRTP)和类似持久性有机污染物的行为,因此不能被视为 PBDEs 的合适替代品。一组低分子量替代 BFRs 和非卤化 OPFRs 根据 Pov 和 LRTP 指标显示出潜在更好的环境性能。不过,结果必须谨慎解释,因为存在显著的不确定性和有限的数据,无法进行彻底的模型评估。在工业替代策略中,还应考虑其他环境参数,如毒性和生物累积潜力以及功能问题。