Cyclofluidic Ltd, Biopark, Broadwater Road, Welwyn Garden City AL7 3AX, UK.
J Med Chem. 2013 Apr 11;56(7):3033-47. doi: 10.1021/jm400099d. Epub 2013 Mar 25.
Drug discovery faces economic and scientific imperatives to deliver lead molecules rapidly and efficiently. Using traditional paradigms the molecular design, synthesis, and screening loops enforce a significant time delay leading to inefficient use of data in the iterative molecular design process. Here, we report the application of a flow technology platform integrating the key elements of structure-activity relationship (SAR) generation to the discovery of novel Abl kinase inhibitors. The platform utilizes flow chemistry for rapid in-line synthesis, automated purification, and analysis coupled with bioassay. The combination of activity prediction using Random-Forest regression with chemical space sampling algorithms allows the construction of an activity model that refines itself after every iteration of synthesis and biological result. Within just 21 compounds, the automated process identified a novel template and hinge binding motif with pIC50 > 8 against Abl kinase--both wild type and clinically relevant mutants. Integrated microfluidic synthesis and screening coupled with machine learning design have the potential to greatly reduce the time and cost of drug discovery within the hit-to-lead and lead optimization phases.
药物发现面临着经济和科学的双重压力,需要快速有效地提供先导化合物。在传统的方法中,分子设计、合成和筛选环节会导致显著的时间延迟,从而导致迭代分子设计过程中数据的利用效率低下。在这里,我们报告了一种将关键的构效关系(SAR)生成元素集成到新型 Abl 激酶抑制剂发现中的流动技术平台的应用。该平台利用流动化学进行快速在线合成、自动化纯化和分析,并结合生物测定。使用随机森林回归和化学空间采样算法进行活性预测的组合允许构建一个活性模型,该模型在每次合成和生物学结果的迭代后都会自我完善。在仅仅 21 个化合物中,自动化过程确定了一个具有 pIC50>8 的新型模板和铰链结合基序,对 Abl 激酶(野生型和临床相关突变体)均具有活性。集成的微流控合成和筛选以及机器学习设计有可能大大缩短药物发现的时间和成本,包括从命中到先导化合物和先导化合物优化阶段。