Christensen Melodie, Yunker Lars P E, Adedeji Folarin, Häse Florian, Roch Loïc M, Gensch Tobias, Dos Passos Gomes Gabriel, Zepel Tara, Sigman Matthew S, Aspuru-Guzik Alán, Hein Jason E
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA.
Commun Chem. 2021 Aug 2;4(1):112. doi: 10.1038/s42004-021-00550-x.
Autonomous process optimization involves the human intervention-free exploration of a range process parameters to improve responses such as product yield and selectivity. Utilizing off-the-shelf components, we develop a closed-loop system for carrying out parallel autonomous process optimization experiments in batch. Upon implementation of our system in the optimization of a stereoselective Suzuki-Miyaura coupling, we find that the definition of a set of meaningful, broad, and unbiased process parameters is the most critical aspect of successful optimization. Importantly, we discern that phosphine ligand, a categorical parameter, is vital to determination of the reaction outcome. To date, categorical parameter selection has relied on chemical intuition, potentially introducing bias into the experimental design. In seeking a systematic method for selecting a diverse set of phosphine ligands, we develop a strategy that leverages computed molecular feature clustering. The resulting optimization uncovers conditions to selectively access the desired product isomer in high yield.
自主过程优化涉及在无人工干预的情况下探索一系列过程参数,以改善诸如产品收率和选择性等响应。利用现成的组件,我们开发了一个闭环系统,用于在间歇式操作中进行并行自主过程优化实验。在将我们的系统应用于立体选择性铃木-宫浦偶联反应的优化过程中,我们发现定义一组有意义、广泛且无偏差的过程参数是成功优化的最关键方面。重要的是,我们发现膦配体作为一个分类参数,对反应结果的确定至关重要。迄今为止,分类参数的选择依赖于化学直觉,这可能会在实验设计中引入偏差。在寻求一种系统的方法来选择多样化的膦配体时,我们开发了一种利用计算分子特征聚类的策略。由此产生的优化揭示了以高产率选择性获得所需产物异构体的条件。