University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice, Poland.
Dalton Trans. 2013 Apr 28;42(16):5682-9. doi: 10.1039/c3dt33097d.
The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu(II), 5-8 for Zn(II), 4-8 for Cd(II), 3-7 for Pb(II). The maximum adsorption capacities of Cu(II), Zn(II), Cd(II) and Pb(II) on GO at pH = 5 are 294, 345, 530, 1119 mg g(-1), respectively. The competitive adsorption experiments showed the affinity in the order of Pb(II) > Cu(II) ≫ Cd(II) > Zn(II). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me(II) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents.
研究了氧化石墨烯(GO)对二价金属离子(铜、锌、镉和铅)的吸附性能。采用重铬酸钾氧化石墨制备的 GO 通过扫描电子显微镜(SEM)、粉末 X 射线衍射(XRD)、X 射线光电子能谱(XPS)和红外光谱(FT-IR)进行了表征。批量实验和火焰原子吸收光谱(F-AAS)测量的结果表明,在较宽的 pH 范围内可以实现最大吸附:Cu(II)的 pH 为 3-7,Zn(II)的 pH 为 5-8,Cd(II)的 pH 为 4-8,Pb(II)的 pH 为 3-7。在 pH = 5 时,GO 对 Cu(II)、Zn(II)、Cd(II)和 Pb(II)的最大吸附容量分别为 294、345、530 和 1119 mg g(-1)。竞争吸附实验表明,金属离子在 GO 上的亲和顺序为 Pb(II) > Cu(II) ≫ Cd(II) > Zn(II)。吸附等温线和动力学研究表明,金属离子在 GO 纳米片上的吸附是单层覆盖,吸附受化学吸附控制,涉及金属离子与 GO 表面含氧基团的强表面络合。XPS(O1s 和 C1s 峰的结合能和形状)证实了 GO 与吸附金属离子的化学吸附。吸附实验表明,金属离子络合后,GO 在水中的分散性发生显著变化。吸附后,观察到团聚和沉淀的趋势。GO 的良好分散性和 GO-Me(II)强烈的沉淀趋势为从水溶液中去除重金属开辟了道路。GO 在分析化学中的潜在应用作为痕量元素预浓缩的固体吸附剂和重金属离子污染清除,源自其最大吸附容量远高于任何现有报道的吸附剂。
Dalton Trans. 2013-4-28
Dalton Trans. 2011-9-14
Environ Sci Technol. 2011-11-17
J Hazard Mater. 2007-2-9
J Hazard Mater. 2009-7-30
ACS Appl Mater Interfaces. 2019-8-7
Beilstein J Nanotechnol. 2025-7-10
Int J Environ Res Public Health. 2025-5-2
Materials (Basel). 2024-6-10
Nanomaterials (Basel). 2024-6-16