Suppr超能文献

胶原蛋白合成在心室和血管适应低氧性肺动脉高压中的作用。

The role of collagen synthesis in ventricular and vascular adaptation to hypoxic pulmonary hypertension.

作者信息

Schreier David, Hacker Timothy, Song Gouqing, Chesler Naomi

机构信息

Department of Biomedical Engineering, University of Wisconsin, 2145 ECB, 1550 Engineering Drive, Madison, WI 53706, USA.

出版信息

J Biomech Eng. 2013 Feb;135(2):021018. doi: 10.1115/1.4023480.

Abstract

Pulmonary arterial hypertension (PAH) is a rapidly fatal disease in which mortality is typically due to right ventricular (RV) failure. An excellent predictor of mortality in PAH is proximal pulmonary artery stiffening, which is mediated by collagen accumulation in hypoxia-induced pulmonary hypertension (HPH) in mice. We sought to investigate the impact of limiting vascular and ventricular collagen accumulation on RV function and the hemodynamic coupling efficiency between the RV and pulmonary vasculature. Inbred mice were exposed to chronic hypoxia for 10 days with either no treatment (HPH) or with treatment with a proline analog that impairs collagen synthesis (CHOP-PEG; HPH + CP). Both groups were compared to control mice (CTL) exposed only to normoxia (no treatment). An admittance catheter was used to measure pressure-volume loops at baseline and during vena cava occlusion, with mice ventilated with either room air or 8% oxygen, from which pulmonary hemodynamics, RV function, and ventricular-vascular coupling efficiency (ηvvc) were calculated. Proline analog treatment limited increases in RV afterload (neither effective arterial elastance Ea nor total pulmonary vascular resistance significantly increased compared to CTL with CHOP-PEG), limited the development of pulmonary hypertension (CHOP-PEG reduced right ventricular systolic pressure by 10% compared to HPH, p < 0.05), and limited RV hypertrophy (CHOP-PEG reduced RV mass by 18% compared to HPH, p < 0.005). In an acutely hypoxic state, treatment improved RV function (CHOP-PEG increased end-systolic elastance Ees by 43%, p < 0.05) and maintained ηvvc at control, room air levels. CHOP-PEG also decreased lung collagen content by 12% measured biochemically compared to HPH (p < 0.01), with differences evident in large and small pulmonary arteries by histology. Our results demonstrate that preventing new collagen synthesis limits pulmonary hypertension development by reducing collagen accumulation in the pulmonary arteries that affect RV afterload. In particular, the proline analog limited structural and functional changes in distal pulmonary arteries in this model of early and somewhat mild pulmonary hypertension. We conclude that collagen plays an important role in small pulmonary artery remodeling and, thereby, affects RV structure and function changes induced by chronic hypoxia.

摘要

肺动脉高压(PAH)是一种迅速致命的疾病,其死亡率通常归因于右心室(RV)衰竭。PAH死亡率的一个极佳预测指标是近端肺动脉僵硬度增加,这是由小鼠缺氧诱导的肺动脉高压(HPH)中胶原蛋白积累介导的。我们试图研究限制血管和心室胶原蛋白积累对右心室功能以及右心室与肺血管系统之间血流动力学耦合效率的影响。将近交系小鼠暴露于慢性缺氧环境10天,一组不进行任何处理(HPH组),另一组用一种会损害胶原蛋白合成的脯氨酸类似物进行处理(CHOP - PEG组;HPH + CP组)。将这两组与仅暴露于常氧环境(不进行处理)的对照小鼠(CTL组)进行比较。使用导纳导管在基线和腔静脉闭塞期间测量压力 - 容积环,小鼠分别用室内空气或8%氧气进行通气,由此计算肺血流动力学、右心室功能以及心室 - 血管耦合效率(ηvvc)。脯氨酸类似物处理限制了右心室后负荷的增加(与CHOP - PEG处理的CTL组相比,有效动脉弹性Ea和总肺血管阻力均未显著增加),限制了肺动脉高压的发展(与HPH组相比,CHOP - PEG使右心室收缩压降低了10%,p < 0.05),并限制了右心室肥厚(与HPH组相比,CHOP - PEG使右心室质量降低了18%,p < 0.005)。在急性缺氧状态下,处理改善了右心室功能(CHOP - PEG使收缩末期弹性Ees增加了43%,p < 0.05),并将ηvvc维持在对照室内空气水平。与HPH组相比,通过生化方法测量,CHOP - PEG还使肺胶原蛋白含量降低了12%(p < 0.01),组织学检查显示在大、小肺动脉中差异明显。我们的结果表明,通过减少影响右心室后负荷的肺动脉中的胶原蛋白积累,防止新的胶原蛋白合成可限制肺动脉高压的发展。特别是,在这个早期且程度稍轻的肺动脉高压模型中,脯氨酸类似物限制了远端肺动脉的结构和功能变化。我们得出结论,胶原蛋白在小肺动脉重塑中起重要作用,从而影响慢性缺氧诱导的右心室结构和功能变化。

相似文献

2
Pulmonary vascular collagen content, not cross-linking, contributes to right ventricular pulsatile afterload and overload in early pulmonary hypertension.
J Appl Physiol (1985). 2017 Feb 1;122(2):253-263. doi: 10.1152/japplphysiol.00325.2016. Epub 2016 Nov 17.
3
Measuring right ventricular function in the normal and hypertensive mouse hearts using admittance-derived pressure-volume loops.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H2069-75. doi: 10.1152/ajpheart.00805.2010. Epub 2010 Oct 8.
5
Pulmonary vascular mechanics: important contributors to the increased right ventricular afterload of pulmonary hypertension.
Exp Physiol. 2013 Aug;98(8):1267-73. doi: 10.1113/expphysiol.2012.069096. Epub 2013 May 10.
6
Direct and indirect protection of right ventricular function by estrogen in an experimental model of pulmonary arterial hypertension.
Am J Physiol Heart Circ Physiol. 2014 Aug 1;307(3):H273-83. doi: 10.1152/ajpheart.00758.2013. Epub 2014 Jun 6.
7
Effects of acute Rho kinase inhibition on chronic hypoxia-induced changes in proximal and distal pulmonary arterial structure and function.
J Appl Physiol (1985). 2011 Jan;110(1):188-98. doi: 10.1152/japplphysiol.00533.2010. Epub 2010 Nov 18.
8
Carvedilol improves biventricular fibrosis and function in experimental pulmonary hypertension.
J Mol Med (Berl). 2015 Jun;93(6):663-74. doi: 10.1007/s00109-015-1251-9. Epub 2015 Jan 18.
10
The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1823-31. doi: 10.1152/ajpheart.00493.2009. Epub 2010 Sep 17.

引用本文的文献

1
Female Fibroblast Activation Is Estrogen-Mediated in Sex-Specific 3D-Bioprinted Pulmonary Artery Adventitia Models.
ACS Biomater Sci Eng. 2025 May 12;11(5):2935-2945. doi: 10.1021/acsbiomaterials.5c00123. Epub 2025 Apr 26.
2
Changes of collagen content in lung tissues of plateau yak and its mechanism of adaptation to hypoxia.
PeerJ. 2024 Oct 1;12:e18250. doi: 10.7717/peerj.18250. eCollection 2024.
6
NFATc3 regulation of collagen V expression contributes to cellular immunity to collagen type V and hypoxic pulmonary hypertension.
Am J Physiol Lung Cell Mol Physiol. 2020 Dec 1;319(6):L968-L980. doi: 10.1152/ajplung.00184.2020. Epub 2020 Sep 30.
10
Pulmonary vascular mechanical consequences of ischemic heart failure and implications for right ventricular function.
Am J Physiol Heart Circ Physiol. 2019 May 1;316(5):H1167-H1177. doi: 10.1152/ajpheart.00319.2018. Epub 2019 Feb 15.

本文引用的文献

2
A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects.
Am J Physiol Lung Cell Mol Physiol. 2012 May 15;302(10):L977-91. doi: 10.1152/ajplung.00362.2011. Epub 2012 Feb 3.
4
A novel murine model of severe pulmonary arterial hypertension.
Am J Respir Crit Care Med. 2011 Nov 15;184(10):1171-82. doi: 10.1164/rccm.201103-0412OC. Epub 2011 Aug 25.
5
Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):279-89. doi: 10.1007/s10237-011-0309-z. Epub 2011 May 3.
6
Measuring right ventricular function in the normal and hypertensive mouse hearts using admittance-derived pressure-volume loops.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H2069-75. doi: 10.1152/ajpheart.00805.2010. Epub 2010 Oct 8.
7
The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1823-31. doi: 10.1152/ajpheart.00493.2009. Epub 2010 Sep 17.
8
Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era.
Circulation. 2010 Jul 13;122(2):156-63. doi: 10.1161/CIRCULATIONAHA.109.911818. Epub 2010 Jun 28.
9
Treprostinil inhibits the recruitment of bone marrow-derived circulating fibrocytes in chronic hypoxic pulmonary hypertension.
Eur Respir J. 2010 Dec;36(6):1302-14. doi: 10.1183/09031936.00028009. Epub 2010 Jun 4.
10
Thrombospondin-1 null mice are resistant to hypoxia-induced pulmonary hypertension.
J Cardiothorac Surg. 2010 May 4;5:32. doi: 10.1186/1749-8090-5-32.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验