Department of Physics, Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244-1130, United States.
ACS Nano. 2013 Apr 23;7(4):3341-50. doi: 10.1021/nn400125c. Epub 2013 Mar 5.
One primary goal in nanobiotechnology is designing new methodologies for molecular biomedical diagnosis at stages much earlier than currently possible and without use of expensive reagents and sophisticated equipment. In this work, we show the proof of principle for single-molecule detection of the nucleocapsid protein 7 (NCp7), a protein biomarker of the HIV-1 virus, using synthetic nanopores and the resistive-pulse technique. The biosensing mechanism relied upon specific interactions between NCp7 and aptamers of stem-loop 3 (SL3) in the packaging domain of the retroviral RNA genome. One critical step of this study was the choice of the optimal size of the nanopores for accurate, label-free determinations of the dissociation constant of the NCp7 protein-SL3 RNA aptamer complex. Therefore, we systematically investigated the NCp7 protein-SL3 RNA aptamer complex employing two categories of nanopores in a silicon nitride membrane: (i) small, whose internal diameter was smaller than 6 nm, and (ii) large, whose internal diameter was in the range of 7 to 15 nm. Here, we demonstrate that only the use of nanopores with an internal diameter that is smaller than or comparable with the largest cross-sectional size of the NCp7-SL3 aptamer complex enables accurate measurement of the dissociation constant between the two interacting partners. Notably, this determination can be accomplished without the need for prior nanopore functionalization. Moreover, using small solid-state nanopores, we demonstrate the ability to detect drug candidates that inhibit the binding interactions between NCp7 and SL3 RNA by using a test case of N-ethylmaleimide.
纳米生物技术的一个主要目标是设计新的方法学,以便在比目前更早的阶段进行分子生物医学诊断,而无需使用昂贵的试剂和复杂的设备。在这项工作中,我们使用合成纳米孔和电阻脉冲技术展示了对 HIV-1 病毒核衣壳蛋白 7(NCp7)的单分子检测的原理验证。生物传感机制依赖于 NCp7 与逆转录病毒 RNA 基因组包装结构域中茎环 3(SL3)的适体之间的特异性相互作用。这项研究的一个关键步骤是选择最佳的纳米孔尺寸,以进行 NCp7 蛋白-SL3 RNA 适体复合物的准确、无标记解离常数测定。因此,我们系统地研究了 NCp7 蛋白-SL3 RNA 适体复合物,在氮化硅膜中使用了两类纳米孔:(i)小纳米孔,其内径小于 6nm;(ii)大纳米孔,其内径在 7nm 至 15nm 之间。这里,我们证明只有使用内径小于或与 NCp7-SL3 适体复合物的最大横截面尺寸相当的纳米孔,才能准确测量两个相互作用伙伴之间的解离常数。值得注意的是,这种测定无需事先对纳米孔进行功能化。此外,我们使用小的固态纳米孔,通过使用 N-乙基马来酰亚胺作为测试案例,证明了检测抑制 NCp7 和 SL3 RNA 之间结合相互作用的药物候选物的能力。