Suppr超能文献

聚合物排除法检测工程化 FhuA ΔC/Δ4L 蛋白纳米孔。

Inspection of the engineered FhuA ΔC/Δ4L protein nanopore by polymer exclusion.

机构信息

Department of Physics, Syracuse University, Syracuse, NY, USA.

出版信息

Biophys J. 2012 Nov 21;103(10):2115-24. doi: 10.1016/j.bpj.2012.10.008. Epub 2012 Nov 20.

Abstract

Extensive engineering of protein nanopores for biotechnological applications using native scaffolds requires further inspection of their internal geometry and size. Recently, we redesigned ferric hydroxamate uptake component A (FhuA), a 22-β-stranded protein containing an N-terminal 160-residue cork domain (C). The cork domain and four large extracellular loops (4L) were deleted to obtain an unusually stiff engineered FhuA ΔC/Δ4L nanopore. We employed water-soluble poly(ethylene glycols) and dextran polymers to examine the interior of FhuA ΔC/Δ4L. When this nanopore was reconstituted into a synthetic planar lipid bilayer, addition of poly(ethylene glycols) produced modifications in the single-channel conductance, allowing for the evaluation of the nanopore diameter. Here, we report that FhuA ΔC/Δ4L features an approximate conical internal geometry with the cis entrance smaller than the trans entrance, in accord with the asymmetric nature of the crystal structure of the wild-type FhuA protein. Further experiments with impermeable dextran polymers indicated an average internal diameter of ~2.4 nm, a conclusion we arrived at based upon the polymer-induced alteration of the access resistance contribution to the nanopore's total resistance. Molecular insights inferred from this work represent a platform for future protein engineering of FhuA that will be employed for specific tasks in biotechnological applications.

摘要

为了将蛋白纳米孔应用于生物技术领域,需要对其内部结构和尺寸进行进一步的研究。最近,我们重新设计了铁羟胺摄取元件 A(FhuA),这是一种 22-β 折叠的蛋白,包含一个 N 端 160 个残基的塞子域(C)。为了得到一个异常坚硬的工程化 FhuA ΔC/Δ4L 纳米孔,我们删除了塞子域和四个大的细胞外环(4L)。我们采用水溶性聚乙二醇和葡聚糖聚合物来检测 FhuA ΔC/Δ4L 的内部结构。当这个纳米孔被重新构建到合成的平面脂质双层中时,聚乙二醇的加入会改变单通道电导,从而可以评估纳米孔的直径。在这里,我们报告 FhuA ΔC/Δ4L 具有近似的锥形内部结构,其顺式入口小于反式入口,这与野生型 FhuA 蛋白的晶体结构的不对称性质一致。进一步用不可渗透的葡聚糖聚合物进行实验表明,其平均内部直径约为 2.4nm,这一结论是基于聚合物对纳米孔总电阻的接入电阻贡献的改变得出的。从这项工作中推断出的分子见解为未来 FhuA 的蛋白质工程提供了一个平台,将用于生物技术应用中的特定任务。

相似文献

1
Inspection of the engineered FhuA ΔC/Δ4L protein nanopore by polymer exclusion.
Biophys J. 2012 Nov 21;103(10):2115-24. doi: 10.1016/j.bpj.2012.10.008. Epub 2012 Nov 20.
2
Does the lipid environment impact the open-state conductance of an engineered β-barrel protein nanopore?
Biochim Biophys Acta. 2013 Mar;1828(3):1057-65. doi: 10.1016/j.bbamem.2012.12.003. Epub 2012 Dec 11.
3
Redesign of a plugged beta-barrel membrane protein.
J Biol Chem. 2011 Mar 11;286(10):8000-8013. doi: 10.1074/jbc.M110.197723. Epub 2010 Dec 28.
4
Engineering Enhanced Pore Sizes Using FhuA Δ1-160 from E. coli Outer Membrane as Template.
ACS Sens. 2017 Nov 22;2(11):1619-1626. doi: 10.1021/acssensors.7b00481. Epub 2017 Nov 7.
5
FhuA: From Iron-Transporting Transmembrane Protein to Versatile Scaffolds through Protein Engineering.
Acc Chem Res. 2023 Jun 20;56(12):1433-1444. doi: 10.1021/acs.accounts.3c00060. Epub 2023 May 16.
6
Global redesign of a native β-barrel scaffold.
Biochim Biophys Acta. 2016 Jan;1858(1):19-29. doi: 10.1016/j.bbamem.2015.10.006. Epub 2015 Oct 9.
7
Grafting PNIPAAm from β-barrel shaped transmembrane nanopores.
Biomaterials. 2016 Nov;107:115-23. doi: 10.1016/j.biomaterials.2016.08.033. Epub 2016 Aug 26.
8
Structural and dynamical analysis of an engineered FhuA channel protein embedded into a lipid bilayer or a detergent belt.
J Struct Biol. 2012 Feb;177(2):291-301. doi: 10.1016/j.jsb.2011.12.021. Epub 2012 Jan 11.
9
Siderophore transport through Escherichia coli outer membrane receptor FhuA with disulfide-tethered cork and barrel domains.
J Biol Chem. 2005 Aug 26;280(34):30574-80. doi: 10.1074/jbc.M506708200. Epub 2005 Jun 30.
10
Diffusion through channel derivatives of the Escherichia coli FhuA transport protein.
Eur J Biochem. 2002 Oct;269(20):4948-59. doi: 10.1046/j.1432-1033.2002.03195.x.

引用本文的文献

1
Phospholipid transport to the bacterial outer membrane through an envelope-spanning bridge.
bioRxiv. 2023 Oct 5:2023.10.05.561070. doi: 10.1101/2023.10.05.561070.
2
Engineering Biological Nanopore Approaches toward Protein Sequencing.
ACS Nano. 2023 Sep 12;17(17):16369-16395. doi: 10.1021/acsnano.3c05628. Epub 2023 Jul 25.
3
Functional Diversity of Gram-Negative Permeability Barriers Reflected in Antibacterial Activities and Intracellular Accumulation of Antibiotics.
Antimicrob Agents Chemother. 2023 Feb 16;67(2):e0137722. doi: 10.1128/aac.01377-22. Epub 2023 Jan 30.
4
Biological nanopores for single-molecule sensing.
iScience. 2022 Mar 23;25(4):104145. doi: 10.1016/j.isci.2022.104145. eCollection 2022 Apr 15.
5
Current noise of a protein-selective biological nanopore.
Proteomics. 2022 Mar;22(5-6):e2100077. doi: 10.1002/pmic.202100077. Epub 2021 Jul 31.
6
Insertion state of modular protein nanopores into a membrane.
Biochim Biophys Acta Biomembr. 2021 May 1;1863(5):183570. doi: 10.1016/j.bbamem.2021.183570. Epub 2021 Jan 30.
7
Protein Ligand-Induced Amplification in the 1/ Noise of a Protein-Selective Nanopore.
Langmuir. 2020 Dec 22;36(50):15247-15257. doi: 10.1021/acs.langmuir.0c02498. Epub 2020 Dec 13.
8
Stress-Based High-Throughput Screening Assays to Identify Inhibitors of Cell Envelope Biogenesis.
Antibiotics (Basel). 2020 Nov 13;9(11):808. doi: 10.3390/antibiotics9110808.
9
Eeyarestatin 24 impairs SecYEG-dependent protein trafficking and inhibits growth of clinically relevant pathogens.
Mol Microbiol. 2021 Jan;115(1):28-40. doi: 10.1111/mmi.14589. Epub 2020 Sep 3.
10
Nanopore Fabrication and Application as Biosensors in Neurodegenerative Diseases.
Crit Rev Biomed Eng. 2020;48(1):29-62. doi: 10.1615/CritRevBiomedEng.2020033151.

本文引用的文献

1
Squeezing a single polypeptide through a nanopore.
Soft Matter. 2008 Apr 15;4(5):925-931. doi: 10.1039/b719850g.
2
Engineering a rigid protein tunnel for biomolecular detection.
J Am Chem Soc. 2012 Jun 6;134(22):9521-31. doi: 10.1021/ja3043646. Epub 2012 May 25.
3
Transport of long neutral polymers in the semidilute regime through a protein nanopore.
Phys Rev Lett. 2012 Feb 24;108(8):088104. doi: 10.1103/PhysRevLett.108.088104. Epub 2012 Feb 22.
4
Hofmeister effect in confined spaces: halogen ions and single molecule detection.
Biophys J. 2011 Jun 22;100(12):2929-35. doi: 10.1016/j.bpj.2011.05.003.
5
Redesign of a plugged beta-barrel membrane protein.
J Biol Chem. 2011 Mar 11;286(10):8000-8013. doi: 10.1074/jbc.M110.197723. Epub 2010 Dec 28.
7
Theory for polymer analysis using nanopore-based single-molecule mass spectrometry.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12080-5. doi: 10.1073/pnas.1002194107. Epub 2010 Jun 21.
8
Size and dynamics of the Vibrio cholerae porins OmpU and OmpT probed by polymer exclusion.
Biophys J. 2010 May 19;98(9):1820-9. doi: 10.1016/j.bpj.2010.01.010.
9
The effect of calcium on the conformation of cobalamin transporter BtuB.
Proteins. 2010 Apr;78(5):1153-62. doi: 10.1002/prot.22635.
10
Interrogating single proteins through nanopores: challenges and opportunities.
Trends Biotechnol. 2009 Jun;27(6):333-41. doi: 10.1016/j.tibtech.2009.02.008. Epub 2009 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验