Department of Physics, Syracuse University, Syracuse, NY, USA.
Biophys J. 2012 Nov 21;103(10):2115-24. doi: 10.1016/j.bpj.2012.10.008. Epub 2012 Nov 20.
Extensive engineering of protein nanopores for biotechnological applications using native scaffolds requires further inspection of their internal geometry and size. Recently, we redesigned ferric hydroxamate uptake component A (FhuA), a 22-β-stranded protein containing an N-terminal 160-residue cork domain (C). The cork domain and four large extracellular loops (4L) were deleted to obtain an unusually stiff engineered FhuA ΔC/Δ4L nanopore. We employed water-soluble poly(ethylene glycols) and dextran polymers to examine the interior of FhuA ΔC/Δ4L. When this nanopore was reconstituted into a synthetic planar lipid bilayer, addition of poly(ethylene glycols) produced modifications in the single-channel conductance, allowing for the evaluation of the nanopore diameter. Here, we report that FhuA ΔC/Δ4L features an approximate conical internal geometry with the cis entrance smaller than the trans entrance, in accord with the asymmetric nature of the crystal structure of the wild-type FhuA protein. Further experiments with impermeable dextran polymers indicated an average internal diameter of ~2.4 nm, a conclusion we arrived at based upon the polymer-induced alteration of the access resistance contribution to the nanopore's total resistance. Molecular insights inferred from this work represent a platform for future protein engineering of FhuA that will be employed for specific tasks in biotechnological applications.
为了将蛋白纳米孔应用于生物技术领域,需要对其内部结构和尺寸进行进一步的研究。最近,我们重新设计了铁羟胺摄取元件 A(FhuA),这是一种 22-β 折叠的蛋白,包含一个 N 端 160 个残基的塞子域(C)。为了得到一个异常坚硬的工程化 FhuA ΔC/Δ4L 纳米孔,我们删除了塞子域和四个大的细胞外环(4L)。我们采用水溶性聚乙二醇和葡聚糖聚合物来检测 FhuA ΔC/Δ4L 的内部结构。当这个纳米孔被重新构建到合成的平面脂质双层中时,聚乙二醇的加入会改变单通道电导,从而可以评估纳米孔的直径。在这里,我们报告 FhuA ΔC/Δ4L 具有近似的锥形内部结构,其顺式入口小于反式入口,这与野生型 FhuA 蛋白的晶体结构的不对称性质一致。进一步用不可渗透的葡聚糖聚合物进行实验表明,其平均内部直径约为 2.4nm,这一结论是基于聚合物对纳米孔总电阻的接入电阻贡献的改变得出的。从这项工作中推断出的分子见解为未来 FhuA 的蛋白质工程提供了一个平台,将用于生物技术应用中的特定任务。