High Pressure and Temperature Laboratory, Faculty of Science, Jadavpur University, Kolkata-700032, India.
J Phys Condens Matter. 2013 Mar 27;25(12):125401. doi: 10.1088/0953-8984/25/12/125401. Epub 2013 Feb 28.
We have investigated the electronic structure and the mechanism of the pressure induced phase transition of beryllium selenide (BeSe) by employing a first-principles pseudopotential method within the framework of density functional theory. Our study demonstrates that use of the hybrid PBE0 functional (PBE stands for Perdew, Burke and Ernzerhof) leads to significant improvement in the band gap calculations, compared to those using either of the common density functionals (local density approximation (LDA) and generalized gradient approximation (GGA)), which severely underestimate the band gap of BeSe. The band gap obtained from the hybrid PBE0 functional shows excellent agreement with available experimental data. A constant-pressure (NPH) first-principles molecular dynamics (FPMD) approach has been adopted to characterize the first-order pressure induced phase transition from the zinc blende (ZB) to the nickel arsenide (NiAs) structure. We have shown that the FPMD simulation overestimates the transition pressure P(T) (compared to static enthalpy and experimental data) due to overpressure in the simulation box. The MD simulation reveals the structural pathway (cubic → orthorhombic → monoclinic → hexagonal), leading from the ZB phase to the NiAs phase. To find an explanation for the phase transition we calculated the vibrational and elastic properties under pressure. Negative Grüneisen parameters were obtained for the transverse acoustic phonon modes at the X and L high symmetry points. However, no mechanical instability or imaginary frequencies were found at pressures near P(T). Thus the transition results from a thermodynamic instability rather than an elastic/dynamical one. We have also calculated the optical properties of both the B3 and B8 phases, such as the real and imaginary parts of the dielectric constant, reflectivity, loss function and refractive index, and compared them with the existing experimental and theoretical data. An abrupt decrease is obtained from the reflectivity spectrum of the NiAs phase at P(T), which is supported from the peaks in the loss function.
我们采用第一性原理赝势方法在密度泛函理论框架内研究了硒化铍(BeSe)的电子结构和压力诱导相变机制。我们的研究表明,与使用常见密度泛函(局域密度近似(LDA)和广义梯度近似(GGA))相比,使用混合 PBE0 泛函(PBE 代表 Perdew、Burke 和 Ernzerhof)可以显著提高能带隙计算的准确性,后者严重低估了 BeSe 的能带隙。混合 PBE0 泛函得到的能带隙与可用的实验数据吻合得非常好。我们采用了恒压(NPH)第一性原理分子动力学(FPMD)方法来描述从闪锌矿(ZB)到镍砷化物(NiAs)结构的一级压力诱导相变。我们表明,由于模拟盒中的过压,FPMD 模拟高估了相变压力 P(T)(与静态焓和实验数据相比)。MD 模拟揭示了从 ZB 相到 NiAs 相的结构途径(立方→正交→单斜→六方)。为了找到相变的解释,我们在压力下计算了振动和弹性性质。在 X 和 L 高对称点的横向声学声子模式中得到了负的格林艾森参数。然而,在接近 P(T)的压力下,没有发现机械不稳定性或虚频。因此,相变是由热力学不稳定性而不是弹性/动力学不稳定性引起的。我们还计算了 B3 和 B8 相的光学性质,例如介电常数的实部和虚部、反射率、损耗函数和折射率,并将它们与现有的实验和理论数据进行了比较。在 NiAs 相的反射率谱中,在 P(T)处得到了一个突然的下降,这在损耗函数的峰值中得到了支持。