Suppr超能文献

模拟微重力对人成骨细胞的有害影响通过改良低强度脉冲超声逆转。

Reversal of the detrimental effects of simulated microgravity on human osteoblasts by modified low intensity pulsed ultrasound.

机构信息

Orthopaedic Bioengineering Research Lab, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA.

出版信息

Ultrasound Med Biol. 2013 May;39(5):804-12. doi: 10.1016/j.ultrasmedbio.2012.11.016. Epub 2013 Feb 27.

Abstract

Microgravity (MG) is known to induce bone loss in astronauts during long-duration space mission because of a lack of sufficient mechanical stimulation under MG. It has been demonstrated that mechanical signals are essential for maintaining cell viability and motility, and they possibly serve as a countermeasure to the catabolic effects of MG. The objective of this study was to examine the effects of high-frequency acoustic wave signals on osteoblasts in a simulated microgravity (SMG) environment (created using 1-D clinostat bioreactor) using a modified low-intensity pulsed ultrasound (mLIPUS). Specifically, we evaluated the hypothesis that osteoblasts (human fetal osteoblastic cell line) exposure to mLIPUS for 20 min/d at 30 mW/cm(2) will significantly reduce the detrimental effects of SMG. Effects of SMG with mLIPUS were analyzed using the MTS proliferation assay for proliferation, phalloidin for F-actin staining, Sirius red stain for collagen, and Alizarin red for mineralization. Our data showed that osteoblast exposure to SMG results in significant decreases in proliferation (∼ -38% and ∼ -44% on days 4 and 6, respectively; p < 0.01), collagen content (∼ -22%; p < 0.05) and mineralization (∼ -37%; p < 0.05) and actin stress fibers. In contrast, mLIPUS stimulation in SMG condition significantly increases the rate of proliferation (∼24% by day 6; p < 0.05), collagen content (∼52%; p < 0.05) and matrix mineralization (∼25%; p < 0.001) along with restoring formation of actin stress fibers in the SMG-exposed osteoblasts. These data suggest that the acoustic wave can potentially be used as a countermeasure for disuse osteopenia.

摘要

微重力(MG)已知会在宇航员进行长时间太空任务期间导致骨质流失,因为在 MG 下缺乏足够的机械刺激。已经证明,机械信号对于维持细胞活力和运动性至关重要,并且它们可能作为 MG 分解代谢作用的对策。本研究的目的是使用改良的低强度脉冲超声(mLIPUS)在模拟微重力(SMG)环境(使用 1-D 回转生物反应器创建)中检查高频声波信号对成骨细胞的影响。具体而言,我们评估了以下假设:将成骨细胞(人胎成骨细胞系)暴露于 30 mW/cm2 的 mLIPUS 下 20 分钟/天,将显著降低 SMG 的有害影响。使用 MTS 增殖测定法分析 SMG 与 mLIPUS 的协同作用,用于增殖,鬼笔环肽用于 F-肌动蛋白染色,茜素红用于胶原蛋白染色,以及茜素红用于矿化。我们的数据表明,成骨细胞暴露于 SMG 会导致增殖显著减少(分别在第 4 天和第 6 天约减少 38%和 44%;p <0.01),胶原蛋白含量减少(约 22%;p <0.05)和矿化减少(约 37%;p <0.05)以及肌动蛋白应力纤维。相反,在 SMG 条件下,mLIPUS 刺激可显著增加增殖率(第 6 天约增加 24%;p <0.05),胶原蛋白含量增加(约 52%;p <0.05)和基质矿化增加(约 25%;p <0.001),同时恢复 SMG 暴露的成骨细胞中肌动蛋白应力纤维的形成。这些数据表明,声波有可能用作废用性骨质疏松症的对策。

相似文献

4
Effect of low intensity ultrasounds on the growth of osteoblasts.低强度超声波对成骨细胞生长的影响。
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5834-7. doi: 10.1109/IEMBS.2007.4353674.

引用本文的文献

本文引用的文献

7
Mechanotransduction in bone repair and regeneration.骨修复和再生中的机械转导。
FASEB J. 2010 Oct;24(10):3625-32. doi: 10.1096/fj.10-157370. Epub 2010 May 26.
10
Mechanotransduction in osteoblast regulation and bone disease.成骨细胞调节与骨疾病中的机械转导
Trends Mol Med. 2009 May;15(5):208-16. doi: 10.1016/j.molmed.2009.03.001. Epub 2009 Apr 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验