DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology-KIT, Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe, Germany.
Ultramicroscopy. 2013 May;128:1-9. doi: 10.1016/j.ultramic.2012.12.018. Epub 2013 Jan 2.
Interactions with the extracellular matrix (ECM) govern a wide range of cellular functions, including survival, migration and invasion. However, in adherent cells these interactions occur primarily on the basal cell side, making them inaccessible to high-resolution, surface-scanning imaging techniques such as atomic force microscopy (AFM) or scanning electron microscopy (SEM). Here we describe a fast and reliable method for inverting adherent cells, exposing the basal cell membrane for direct analysis by AFM or SEM in combination with fluorescence microscopy. Cells including their matrix adhesion sites remain intact during the inversion process and are transferred together with the complete array of basally associated ECM proteins. Molecular features of ECM proteins, such as the characteristic 67 nm collagen D-periodicity, are well preserved after inversion. To demonstrate the versatility of the method, we compared basal interactions of fibroblasts with fibrillar collagen I and fibronectin matrices. While fibroblasts remodel the fibronectin layer exclusively from above, they actively invade even thin collagen layers by contacting individual collagen nanofibrils both basally and apically through a network of cellular extensions. Cell-matrix entanglement coincides with enhanced cell spreading and flattening, indicating that nanoscale ECM interactions govern macroscopic changes in cell morphology. The presented cell inversion technique can thus provide novel insight into nanoscale cell-matrix interactions at the basal cell side.
细胞外基质 (ECM) 的相互作用控制着广泛的细胞功能,包括存活、迁移和侵袭。然而,在贴壁细胞中,这些相互作用主要发生在基底细胞侧,这使得它们无法被原子力显微镜 (AFM) 或扫描电子显微镜 (SEM) 等高分辨率表面扫描成像技术所接触。在这里,我们描述了一种快速可靠的方法,可以翻转贴壁细胞,暴露出基底细胞膜,以便通过 AFM 或 SEM 结合荧光显微镜进行直接分析。在翻转过程中,细胞及其基质附着点保持完整,并与完整的基底相关 ECM 蛋白一起转移。翻转后,ECM 蛋白的分子特征,如特征性的 67nm 胶原 D 周期性,得到很好的保留。为了证明该方法的多功能性,我们比较了成纤维细胞与纤维状胶原 I 和纤维连接蛋白基质的基底相互作用。成纤维细胞仅从上方重塑纤维连接蛋白层,它们通过基底和顶端的细胞突起网络,积极地接触单个胶原纳米纤维,从而主动侵入即使很薄的胶原层。细胞基质的缠结与细胞扩展和变平增强同时发生,表明纳米级 ECM 相互作用控制着细胞形态的宏观变化。因此,所提出的细胞翻转技术可以为基底细胞侧的纳米级细胞-基质相互作用提供新的见解。