Suppr超能文献

使用 MAPPOS 自动进行后挑选可提高 cryo-EM 显微照片中粒子图像的检测效率。

Automatic post-picking using MAPPOS improves particle image detection from cryo-EM micrographs.

机构信息

Department of Statistics, Ludwig-Maximilians University München, Germany.

出版信息

J Struct Biol. 2013 May;182(2):59-66. doi: 10.1016/j.jsb.2013.02.008. Epub 2013 Feb 21.

Abstract

Cryo-electron microscopy (cryo-EM) studies using single particle reconstruction are extensively used to reveal structural information on macromolecular complexes. Aiming at the highest achievable resolution, state of the art electron microscopes automatically acquire thousands of high-quality micrographs. Particles are detected on and boxed out from each micrograph using fully- or semi-automated approaches. However, the obtained particles still require laborious manual post-picking classification, which is one major bottleneck for single particle analysis of large datasets. We introduce MAPPOS, a supervised post-picking strategy for the classification of boxed particle images, as additional strategy adding to the already efficient automated particle picking routines. MAPPOS employs machine learning techniques to train a robust classifier from a small number of characteristic image features. In order to accurately quantify the performance of MAPPOS we used simulated particle and non-particle images. In addition, we verified our method by applying it to an experimental cryo-EM dataset and comparing the results to the manual classification of the same dataset. Comparisons between MAPPOS and manual post-picking classification by several human experts demonstrated that merely a few hundred sample images are sufficient for MAPPOS to classify an entire dataset with a human-like performance. MAPPOS was shown to greatly accelerate the throughput of large datasets by reducing the manual workload by orders of magnitude while maintaining a reliable identification of non-particle images.

摘要

冷冻电子显微镜(cryo-EM)研究使用单颗粒重建技术广泛用于揭示大分子复合物的结构信息。为了实现最高的分辨率,最先进的电子显微镜自动获取数千张高质量的显微照片。使用全自动或半自动方法在每张显微照片上检测并框出颗粒。然而,获得的颗粒仍然需要费力的手动后挑选分类,这是对大型数据集进行单颗粒分析的主要瓶颈之一。我们引入了 MAPPOS,这是一种用于框选颗粒图像分类的有监督后挑选策略,作为已经高效的自动颗粒挑选例程的附加策略。MAPPOS 使用机器学习技术从少数特征图像特征中训练出一个强大的分类器。为了准确量化 MAPPOS 的性能,我们使用模拟的颗粒和非颗粒图像进行了测试。此外,我们通过将其应用于实验性 cryo-EM 数据集并将结果与同一数据集的手动分类进行比较,验证了我们的方法。MAPPOS 与几位人类专家的手动后挑选分类之间的比较表明,仅使用几百张样本图像就足以使 MAPPOS 以类似于人类的性能对整个数据集进行分类。MAPPOS 通过将手动工作量减少几个数量级,同时可靠地识别非颗粒图像,大大加快了大型数据集的处理速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验