Suppr超能文献

连线成图:现代电子病历时代的基于规则的决策支持系统。

Connecting the dots: rule-based decision support systems in the modern EMR era.

机构信息

Division of Critical Care Medicine, Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

J Clin Monit Comput. 2013 Aug;27(4):443-8. doi: 10.1007/s10877-013-9445-6. Epub 2013 Feb 28.

Abstract

The intensive care unit (ICU) environment is rich in both medical device and electronic medical record (EMR) data. The ICU patient population is particularly vulnerable to medical error or delayed medical intervention both of which are associated with excess morbidity, mortality and cost. The development and deployment of smart alarms, computerized decision support systems (DSS) and "sniffers" within ICU clinical information systems has the potential to improve the safety and outcomes of critically ill hospitalized patients. However, the current generations of alerts, run largely through bedside monitors, are far from ideal and rarely support the clinician in the early recognition of complex physiologic syndromes or deviations from expected care pathways. False alerts and alert fatigue remain prevalent. In the coming era of widespread EMR implementation novel medical informatics methods may be adaptable to the development of next generation, rule-based DSS.

摘要

重症监护病房(ICU)环境中富含医疗器械和电子病历(EMR)数据。ICU 患者群体特别容易受到医疗差错或延迟医疗干预的影响,这两者都与过高的发病率、死亡率和成本有关。在 ICU 临床信息系统中开发和部署智能警报、计算机决策支持系统(DSS)和“嗅探器”有可能提高危重病住院患者的安全性和治疗效果。然而,目前这一代警报主要通过床边监护仪运行,远非理想,并且很少能帮助临床医生早期识别复杂的生理综合征或与预期护理路径的偏差。虚假警报和警报疲劳仍然很普遍。在即将到来的广泛实施电子病历的时代,新的医学信息学方法可能适用于开发下一代基于规则的 DSS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验