Watson Melanie G, Lopez Juan M, Paun Mihaela, Jones Steven A
Department of Biomedical Engineering, LeTourneau University, Longview, TX, 75607, USA,
J Thromb Thrombolysis. 2013 Nov;36(4):448-57. doi: 10.1007/s11239-013-0905-0.
An improved biointerface was developed, dynamic layer-by-layer self-assembly surface (d-LbL), and utilized as a biologically-active substrate for platelet adhesion and aggregation. Possible clinical applications for this research include improved anti-coagulation surfaces. This work demonstrated the functionality of d-LbL biointerfaces in the presence of platelet-rich-plasma (PRP) with the addition of 20 μM adenosine diphosphate (ADP), a thrombus activator. The surface morphology of the experimental control, plain PRP, was compared to PRP containing additional ADP (PRP + ADP) and resulted in an expected increase of platelet adhesions along the fibrinogen d-LbL substrate. The d-LbL process was used to coat glass slides with fibrinogen, Poly (sodium 4-styrene-sulfonate), and Poly (diallydimethlyammonium chloride). Slides were exposed to PRP under flow and static conditions with and without 20 μM of ADP. Fluorescence microscopy (FM), phase contrast microscopy (PCM), atomic force microscopy (AFM), and field emission-scanning electron microscopy (FE-SEM) were used to evaluate platelet adhesions under the influence of varied shear conditions. PCM images illustrated differences between the standard LbL and d-LbL substrates. FM images provided percent surface coverage values. For high-shear conditions, percent surface coverage values increased when using ADP whereas plain PRP exposure displayed no significant increase. AFM scans also displayed higher mean peak height values and unique surface characteristics for PRP + ADP as opposed to plain PRP. FE-SEM images revealed platelet adhesions along the biointerface and unique characteristics of the d-LbL surface. In conclusion, PRP + ADP was more effective at increasing platelet aggregation, especially under high shear conditions, providing further validation of the improved biointerface.
开发了一种改进的生物界面,即动态逐层自组装表面(d-LbL),并将其用作血小板粘附和聚集的生物活性底物。该研究可能的临床应用包括改进的抗凝表面。这项工作证明了在添加20μM血栓激活剂二磷酸腺苷(ADP)的富含血小板血浆(PRP)存在下,d-LbL生物界面的功能。将实验对照(普通PRP)的表面形态与含有额外ADP的PRP(PRP + ADP)进行比较,结果表明沿纤维蛋白原d-LbL底物的血小板粘附预期会增加。d-LbL过程用于用纤维蛋白原、聚(4-苯乙烯磺酸钠)和聚(二烯丙基二甲基氯化铵)涂覆载玻片。载玻片分别在有和没有20μM ADP的流动和静态条件下暴露于PRP。使用荧光显微镜(FM)、相差显微镜(PCM)、原子力显微镜(AFM)和场发射扫描电子显微镜(FE-SEM)来评估在不同剪切条件影响下的血小板粘附情况。PCM图像显示了标准LbL和d-LbL底物之间的差异。FM图像提供了表面覆盖率值。对于高剪切条件,使用ADP时表面覆盖率值增加,而暴露于普通PRP时则没有显著增加。与普通PRP相比,AFM扫描还显示PRP + ADP的平均峰值高度值更高且具有独特的表面特征。FE-SEM图像揭示了沿生物界面的血小板粘附以及d-LbL表面的独特特征。总之,PRP + ADP在增加血小板聚集方面更有效,尤其是在高剪切条件下,这进一步验证了改进的生物界面。