Suppr超能文献

体外比较结构多样的聚集蛋白聚糖变体对感觉神经元生长锥和丝状伪足的反应。

Comparison of sensory neuron growth cone and filopodial responses to structurally diverse aggrecan variants, in vitro.

机构信息

Spinal Cord and Brain Injury Research Center, and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA.

出版信息

Exp Neurol. 2013 Sep;247:143-57. doi: 10.1016/j.expneurol.2013.02.012. Epub 2013 Mar 1.

Abstract

Following spinal cord injury, a regenerating neurite encounters a glial scar enriched in chondroitin sulfate proteoglycans (CSPGs), which presents a major barrier. There are two points at which a neurite makes contact with glial scar CSPGs: initially, filopodia surrounding the growth cone extend and make contact with CSPGs, then the peripheral domain of the entire growth cone makes CSPG contact. Aggrecan is a CSPG commonly used to model the effect CSPGs have on elongating or regenerating neurites. In this study, we investigated filopodia and growth cone responses to contact with structurally diverse aggrecan variants using the common stripe assay. Using time-lapse imaging with 15-s intervals, we measured growth cone area, growth cone width, growth cone length, filopodia number, total filopodia length, and the length of the longest filopodia following contact with aggrecan. Responses were measured after both filopodia and growth cone contact with five different preparations of aggrecan: two forms of aggrecan derived from bovine articular cartilage (purified and prepared using different techniques), recombinant aggrecan lacking chondroitin sulfate side chains (produced in CHO-745 cells) and two additional recombinant aggrecan preparations with varying lengths of chondroitin sulfate side chains (produced in CHO-K1 and COS-7 cells). Responses in filopodia and growth cone behavior differed between the structurally diverse aggrecan variants. Mutant CHO-745 aggrecan (lacking chondroitin sulfate chains) permitted extensive growth across the PG stripe. Filopodia contact with the CHO-745 aggrecan caused a significant increase in growth cone width and filopodia length (112.7% ± 4.9 and 150.9% ± 7.2 respectively, p<0.05), and subsequently upon growth cone contact, growth cone width remained elevated along with a reduction in filopodia number (121.9% ± 4.2; 72.39% ± 6.4, p<0.05). COS-7 derived aggrecan inhibited neurite outgrowth following growth cone contact. Filopodia contact produced an increase in growth cone area and width (126.5% ± 8.1; 150.3% ± 13.31, p<0.001), and while these parameters returned to baseline upon growth cone contact, a reduction in filopodia number and length was observed (73.94% ± 5.8, 75.3% ± 6.2, p<0.05). CHO-K1 derived aggrecan inhibited neurite outgrowth following filopodia contact, and caused an increase in growth cone area and length (157.6% ± 6.2; 117.0% ± 2.8, p<0.001). Interestingly, the two bovine articular cartilage aggrecan preparations differed in their effects on neurite outgrowth. The proprietary aggrecan (BA I, Sigma-Aldrich) inhibited neurites at the point of growth cone contact, while our chemically purified aggrecan (BA II) inhibited neurite outgrowth at the point of filopodia contact. BA I caused a reduction in growth cone width following filopodia contact (91.7% ± 2.5, p<0.05). Upon growth cone contact, there was a further reduction in growth cone width and area (66.4% ± 2.2; 75.6% ± 2.9; p<0.05), as well as reductions in filopodia number, total length, and max length (75.9% ± 5.7, p<0.05; 68.8% ± 6.0; 69.6% ± 3.5, p<0.001). Upon filopodia contact, BA II caused a significant increase in growth cone area, and reductions in filopodia number and total filopodia length (115.9% ± 5.4, p<0.05; 72.5% ± 2.7; 77.7% ± 3.2, p<0.001). In addition, filopodia contact with BA I caused a significant reduction in growth cone velocity (38.6 nm/s ± 1.3 before contact, 17.1 nm/s ± 3.6 after contact). These data showed that neuron morphology and behavior are differentially dependent upon aggrecan structure. Furthermore, the behavioral changes associated with the approaching growth cone may be predictive of inhibition or growth.

摘要

脊髓损伤后,再生轴突会遇到富含软骨素硫酸盐蛋白聚糖(CSPGs)的神经胶质瘢痕,这是一个主要的障碍。轴突与神经胶质瘢痕 CSPGs 的接触有两个点:最初,生长锥周围的纤毛延伸并与 CSPGs 接触,然后整个生长锥的外围区域与 CSPG 接触。聚集蛋白聚糖是一种常用的 CSPG 模型,用于模拟 CSPGs 对伸长或再生轴突的影响。在这项研究中,我们使用常见的条纹测定法研究了接触不同结构聚集蛋白聚糖变体时的纤毛和生长锥的反应。通过间隔 15 秒的延时成像,我们测量了接触聚集蛋白聚糖后生长锥的面积、宽度、长度、纤毛数量、总纤毛长度和最长纤毛的长度。接触五种不同的聚集蛋白聚糖变体后,测量了反应:两种来源于牛关节软骨的聚集蛋白聚糖(经纯化并采用不同技术制备)、缺乏软骨素硫酸盐侧链的重组聚集蛋白聚糖(在 CHO-745 细胞中产生)和另外两种具有不同长度的软骨素硫酸盐侧链的重组聚集蛋白聚糖制剂(在 CHO-K1 和 COS-7 细胞中产生)。不同结构的聚集蛋白聚糖变体之间的纤毛和生长锥行为反应不同。突变型 CHO-745 聚集蛋白聚糖(缺乏软骨素硫酸盐链)允许在 PG 条纹上广泛生长。纤毛接触 CHO-745 聚集蛋白聚糖导致生长锥宽度和纤毛长度显著增加(分别为 112.7%±4.9 和 150.9%±7.2,p<0.05),随后接触生长锥时,纤毛数量减少,生长锥宽度仍保持升高(121.9%±4.2;72.39%±6.4,p<0.05)。来源于 COS-7 的聚集蛋白聚糖抑制生长锥接触后的神经突生长。纤毛接触产生生长锥面积和宽度增加(126.5%±8.1;150.3%±13.31,p<0.001),并且当这些参数在生长锥接触时恢复到基线时,观察到纤毛数量和长度减少(73.94%±5.8,75.3%±6.2,p<0.05)。来源于 CHO-K1 的聚集蛋白聚糖抑制生长锥接触后的神经突生长,并导致生长锥面积和长度增加(157.6%±6.2;117.0%±2.8,p<0.001)。有趣的是,两种牛关节软骨聚集蛋白聚糖制剂对神经突生长的影响不同。专有的聚集蛋白聚糖(BA I,Sigma-Aldrich)在生长锥接触点抑制神经突,而我们化学纯化的聚集蛋白聚糖(BA II)在纤毛接触点抑制神经突生长。BA I 在纤毛接触后导致生长锥宽度减小(91.7%±2.5,p<0.05)。接触生长锥后,生长锥宽度和面积进一步减小(66.4%±2.2;75.6%±2.9;p<0.05),以及纤毛数量、总长度和最大长度减少(75.9%±5.7,p<0.05;68.8%±6.0;69.6%±3.5,p<0.001)。纤毛接触 BA II 导致生长锥面积显著增加,以及纤毛数量和总纤毛长度减少(115.9%±5.4,p<0.05;72.5%±2.7;77.7%±3.2,p<0.001)。此外,纤毛接触 BA I 导致生长锥速度显著降低(接触前为 38.6nm/s±1.3,接触后为 17.1nm/s±3.6)。这些数据表明,神经元形态和行为对聚集蛋白聚糖结构的依赖性不同。此外,与接近生长锥相关的行为变化可能预示着抑制或生长。

相似文献

引用本文的文献

本文引用的文献

2
A sulfated carbohydrate epitope inhibits axon regeneration after injury.硫酸化碳水化合物表位抑制损伤后的轴突再生。
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4768-73. doi: 10.1073/pnas.1121318109. Epub 2012 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验