Suppr超能文献

大空间上马尔可夫链总变差距离的蒙特卡罗估计及其在系统发育学中的应用。

Monte Carlo estimation of total variation distance of Markov chains on large spaces, with application to phylogenetics.

作者信息

Herbei Radu, Kubatko Laura

机构信息

The Ohio State University – Statistics, Columbus, OH, USA.

出版信息

Stat Appl Genet Mol Biol. 2013 Mar 26;12(1):39-48. doi: 10.1515/sagmb-2012-0023.

Abstract

Markov chains are widely used for modeling in many areas of molecular biology and genetics. As the complexity of such models advances, it becomes increasingly important to assess the rate at which a Markov chain converges to its stationary distribution in order to carry out accurate inference. A common measure of convergence to the stationary distribution is the total variation distance, but this measure can be difficult to compute when the state space of the chain is large. We propose a Monte Carlo method to estimate the total variation distance that can be applied in this situation, and we demonstrate how the method can be efficiently implemented by taking advantage of GPU computing techniques. We apply the method to two Markov chains on the space of phylogenetic trees, and discuss the implications of our findings for the development of algorithms for phylogenetic inference.

摘要

马尔可夫链在分子生物学和遗传学的许多领域中被广泛用于建模。随着此类模型复杂性的提高,为了进行准确的推断,评估马尔可夫链收敛到其平稳分布的速率变得越来越重要。收敛到平稳分布的一个常用度量是总变差距离,但当链的状态空间很大时,这个度量可能很难计算。我们提出了一种蒙特卡罗方法来估计在这种情况下可以应用的总变差距离,并展示了如何利用GPU计算技术有效地实现该方法。我们将该方法应用于系统发育树空间上的两个马尔可夫链,并讨论了我们的发现对系统发育推断算法开发的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验