Suppr超能文献

干重整甲烷中 CO₂ 的转化介绍及低温甲醇合成的新途径。

An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.

机构信息

Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.

出版信息

Acc Chem Res. 2013 Aug 20;46(8):1838-47. doi: 10.1021/ar300217j. Epub 2013 Mar 4.

Abstract

Carbon dioxide is one of the highest contributors to the greenhouse effect, as well as a cheap and nontoxic building block for single carbon source chemistry. As such, CO₂ conversion is one of most important research areas in energy and environment sciences, as well as in catalysis technology. For chemical conversion of CO₂, natural gas (mainly CH₄) is a promising counterpart molecule to the CO₂-related reaction, due to its high availability and low price. More importantly, being able to convert CH₄ to useful fuels and molecules is advantageous, because it is also a kind of "greenhouse effect" gas, and can be an energy alternative to petroleum oil. In this Account, we discuss our development of efficient catalysts with precisely designed nanostructure for CO₂ reforming of CH₄ to produce syngas (mixture of CO and H₂), which can then be converted to many chemicals and energy products. This new production flow can establish a GTL (gas-to-liquid) industry, being currently pushed by the shale gas revolution. From the viewpoint of GTL industry, developing a catalyst for CO₂ reforming of CH₄ is a challenge, because they need a very high production rate to make the huge GTL methane reformer as small as possible. In addition, since both CO₂ and CH₄ give off carbon deposits that deactivate non-precious metallic catalysts very quickly, the total design of catalyst support and supported metallic nanoparticles is necessary. We present a simple but useful method to prepare bimodal catalyst support, where small pores are formed inside large ones during the self-organization of nanoparticles from solution. Large pores enhance the mass transfer rate, while small pores provide large surface areas to disperse active metallic nanoparticles. More importantly, building materials for small pores can also be used as promoters or cocatalysts to further enhance the total activity and stability. Produced syngas from methane reforming is generally catalytically converted in situ via one of two main routes. The first is to use Fischer-Tropsch synthesis (FTS), a process that catalytically converts syngas to hydrocarbons of varying molecular weights. The second is methanol synthesis. The latter has better atomic economy, since the oxygen atom in CO is included in the product and CO₂ can be blended into syngas as a reactant. However, production of methanol is very inefficient in this reaction: only 10-15% one-pass conversion typically at 5.0-10.0 MPa and 523-573 K, due to the severe thermodynamic limitations of this exothermal reaction (CO + 2H₂ = CH₃OH). In this Account, we propose and develop a new route of low-temperature methanol synthesis from CO₂-containing syngas only by adding alcohols, including methanol itself. These alcohols act as homogeneous cocatalysts and the solvent, realizing 70-100% one-pass conversion at only 5.0 MPa and 443 K. The key step is the reaction of the adsorbed formate species with alcohols to yield ester species at low temperatures, followed by the hydrogenation of ester by hydrogen atoms on metallic Cu. This changes the normal reaction path of conventional, high-temperature methanol synthesis from formate via methoxy to methanol.

摘要

二氧化碳是温室效应的主要贡献者之一,也是一种廉价无毒的单碳源化学物质构建块。因此,二氧化碳转化是能源和环境科学以及催化技术中最重要的研究领域之一。对于二氧化碳的化学转化,天然气(主要是 CH₄)是一种很有前景的与二氧化碳相关反应的对应分子,因为它的可用性高、价格低。更重要的是,能够将 CH₄转化为有用的燃料和分子是有利的,因为它也是一种“温室效应”气体,可以作为石油的能源替代品。在本报告中,我们讨论了我们开发的具有精确设计的纳米结构的高效催化剂,用于将 CH₄ 二氧化碳重整为合成气(CO 和 H₂ 的混合物),然后可以将其转化为许多化学品和能源产品。这种新的生产流程可以建立一个 GTL(气转液)产业,目前正在页岩气革命的推动下。从 GTL 产业的角度来看,开发用于 CH₄ 二氧化碳重整的催化剂是一个挑战,因为它们需要非常高的生产速率,以使巨大的 GTL 甲烷重整器尽可能小。此外,由于二氧化碳和 CH₄ 都会释放出积碳,使非贵金属催化剂迅速失活,因此有必要对催化剂载体和负载的金属纳米粒子进行总体设计。我们提出了一种简单但有用的方法来制备双峰催化剂载体,其中纳米粒子从溶液中自组织时会在大孔内形成小孔。大孔可以提高传质速率,而小孔可以提供大的表面积来分散活性金属纳米粒子。更重要的是,小孔的构建材料也可以用作促进剂或共催化剂,以进一步提高总活性和稳定性。甲烷重整产生的合成气通常通过以下两种主要途径中的一种进行原位催化转化。第一种是费托合成(FTS),这是一种将合成气催化转化为不同分子量烃类的过程。第二种是甲醇合成。后者具有更好的原子经济性,因为 CO 中的氧原子包含在产物中,并且 CO₂可以作为反应物掺入合成气中。然而,由于该放热反应的严重热力学限制(CO + 2H₂ = CH₃OH),该反应的甲醇产率非常低:通常在 5.0-10.0 MPa 和 523-573 K 下仅进行 10-15%的单程转化。在本报告中,我们提出并开发了一种仅通过添加醇(包括甲醇本身)从含二氧化碳的合成气中低温合成甲醇的新途径。这些醇作为均相共催化剂和溶剂,在 5.0 MPa 和 443 K 下仅实现 70-100%的单程转化。关键步骤是吸附的甲酸盐物种与醇反应,在低温下生成酯类物质,然后通过金属 Cu 上的氢原子将酯类物质加氢。这改变了常规高温甲醇合成从甲酸盐经甲氧基到甲醇的正常反应途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验