Suppr超能文献

运动神经元发育中 SMN 的时间要求。

Temporal requirement for SMN in motoneuron development.

机构信息

Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Hum Mol Genet. 2013 Jul 1;22(13):2612-25. doi: 10.1093/hmg/ddt110. Epub 2013 Mar 3.

Abstract

Proper function of the motor unit is dependent upon the correct development of dendrites and axons. The infant/childhood onset motoneuron disease spinal muscular atrophy (SMA), caused by low levels of the survival motor neuron (SMN) protein, is characterized by muscle denervation and paralysis. Although different SMA models have shown neuromuscular junction defects and/or motor axon defects, a comprehensive analysis of motoneuron development in vivo under conditions of low SMN will give insight into why the motor unit becomes dysfunctional. We have generated genetic mutants in zebrafish expressing low levels of SMN from the earliest stages of development. Analysis of motoneurons in these mutants revealed motor axons were often shorter and had fewer branches. We also found that motoneurons had significantly fewer dendritic branches and those present were shorter. Analysis of motor axon filopodial dynamics in live embryos revealed that mutants had fewer filopodia and their average half-life was shorter. To determine when SMN was needed to rescue motoneuron development, SMN was conditionally induced in smn mutants during embryonic stages. Only when SMN was added back soon after motoneurons were born, could later motor axon development be rescued. Importantly, analysis of motor behavior revealed that animals with motor axon defects had significant deficits in motor output. We also show that SMN is required earlier for motoneuron development than for survival. These data support that SMN is needed early in development of motoneuron dendrites and axons to develop normally and that this is essential for proper connectivity and movement.

摘要

运动单位的正常功能依赖于树突和轴突的正确发育。婴儿/儿童期发病的运动神经元疾病脊髓性肌萎缩症(SMA)是由生存运动神经元(SMN)蛋白水平降低引起的,其特征是肌肉失神经支配和瘫痪。尽管不同的 SMA 模型显示出神经肌肉接头缺陷和/或运动轴突缺陷,但在 SMN 水平低的情况下对体内运动神经元发育进行全面分析,将深入了解运动单位为何变得功能失调。我们已经在斑马鱼中生成了遗传突变体,这些突变体从发育的最早阶段开始表达低水平的 SMN。对这些突变体中的运动神经元进行分析表明,运动轴突通常较短,分支较少。我们还发现运动神经元的树突分支明显较少,而且现有的树突分支较短。对活体胚胎中运动轴突丝状伪足动力学的分析表明,突变体的丝状伪足较少,其平均半衰期较短。为了确定 SMN 在何时需要拯救运动神经元发育,我们在胚胎阶段条件性诱导 smn 突变体中的 SMN。只有当 SMN 在运动神经元出生后不久被添加回来时,才能挽救后期的运动轴突发育。重要的是,运动行为分析表明,运动轴突缺陷的动物在运动输出方面存在显著缺陷。我们还表明,SMN 对运动神经元发育的需求比生存更早。这些数据支持 SMN 在运动神经元树突和轴突发育过程中早期需要正常发育,这对于适当的连接和运动至关重要。

相似文献

1
Temporal requirement for SMN in motoneuron development.
Hum Mol Genet. 2013 Jul 1;22(13):2612-25. doi: 10.1093/hmg/ddt110. Epub 2013 Mar 3.
2
HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and mRNA Regulation.
J Neurosci. 2017 Nov 29;37(48):11559-11571. doi: 10.1523/JNEUROSCI.1528-17.2017. Epub 2017 Oct 23.
4
Zebrafish survival motor neuron mutants exhibit presynaptic neuromuscular junction defects.
Hum Mol Genet. 2009 Oct 1;18(19):3615-25. doi: 10.1093/hmg/ddp310. Epub 2009 Jul 10.
7
Hyperexcitability precedes motoneuron loss in the mouse model of spinal muscular atrophy.
J Neurophysiol. 2019 Oct 1;122(4):1297-1311. doi: 10.1152/jn.00652.2018. Epub 2019 Jul 31.
8
Motor defects in a Drosophila model for spinal muscular atrophy result from SMN depletion during early neurogenesis.
PLoS Genet. 2022 Jul 25;18(7):e1010325. doi: 10.1371/journal.pgen.1010325. eCollection 2022 Jul.
9
Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10337-42. doi: 10.1073/pnas.1104928108. Epub 2011 Jun 7.

引用本文的文献

1
Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation.
Cell Rep Med. 2024 Aug 20;5(8):101659. doi: 10.1016/j.xcrm.2024.101659. Epub 2024 Jul 26.
2
Diving deep: zebrafish models in motor neuron degeneration research.
Front Neurosci. 2024 Jun 20;18:1424025. doi: 10.3389/fnins.2024.1424025. eCollection 2024.
3
Quantitative Image Analysis of Axonal Morphology in In Vivo Model.
Methods Protoc. 2023 Dec 1;6(6):116. doi: 10.3390/mps6060116.
5
6
Sumoylation regulates the assembly and activity of the SMN complex.
Nat Commun. 2021 Aug 19;12(1):5040. doi: 10.1038/s41467-021-25272-5.
8
Impaired prenatal motor axon development necessitates early therapeutic intervention in severe SMA.
Sci Transl Med. 2021 Jan 27;13(578). doi: 10.1126/scitranslmed.abb6871.
9
Conditional deletion of SMN in cell culture identifies functional SMN alleles.
Hum Mol Genet. 2020 Nov 1;29(21):3477-3492. doi: 10.1093/hmg/ddaa229. Epub 2020 Oct 19.
10
Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy.
Cell Death Dis. 2018 Oct 27;9(11):1100. doi: 10.1038/s41419-018-1081-0.

本文引用的文献

1
Defects in neuromuscular junction remodelling in the Smn(2B/-) mouse model of spinal muscular atrophy.
Neurobiol Dis. 2013 Jan;49:57-67. doi: 10.1016/j.nbd.2012.08.019. Epub 2012 Aug 30.
2
Fluorescence imaging of transgenic zebrafish embryos.
Cold Spring Harb Protoc. 2012 May 1;2012(5):pdb.prot069245. doi: 10.1101/pdb.prot069245.
3
Survival motor neuron affects plastin 3 protein levels leading to motor defects.
J Neurosci. 2012 Apr 11;32(15):5074-84. doi: 10.1523/JNEUROSCI.5808-11.2012.
5
A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse.
Hum Mol Genet. 2012 Apr 1;21(7):1625-38. doi: 10.1093/hmg/ddr600. Epub 2011 Dec 20.
6
Zebrafish mnx1 controls cell fate choice in the developing endocrine pancreas.
Development. 2011 Nov;138(21):4597-608. doi: 10.1242/dev.067736.
7
The spinal muscular atrophy disease protein SMN is linked to the Rho-kinase pathway via profilin.
Hum Mol Genet. 2011 Dec 15;20(24):4865-78. doi: 10.1093/hmg/ddr425. Epub 2011 Sep 14.
8
Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy.
J Clin Invest. 2011 Aug;121(8):3029-41. doi: 10.1172/JCI57291. Epub 2011 Jul 25.
9
Temporal requirement for high SMN expression in SMA mice.
Hum Mol Genet. 2011 Sep 15;20(18):3578-91. doi: 10.1093/hmg/ddr275. Epub 2011 Jun 13.
10
In vivo labeling of zebrafish motor neurons using an mnx1 enhancer and Gal4/UAS.
Genesis. 2011 Jul;49(7):546-54. doi: 10.1002/dvg.20766. Epub 2011 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验