Suppr超能文献

进入玉米数量遗传学的第二个世纪。

Entering the second century of maize quantitative genetics.

机构信息

Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA.

出版信息

Heredity (Edinb). 2014 Jan;112(1):30-8. doi: 10.1038/hdy.2013.6. Epub 2013 Mar 6.

Abstract

Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architecture more similar to other outcrossing organisms than to self-pollinating crops and model plants. In this review, we summarize recent advances in maize genetics, including the development of powerful populations for genetic mapping and genome-wide association studies (GWAS), and the insights these studies yield on the mechanisms underlying complex maize traits. Most maize traits are controlled by a large number of genes, and linkage analysis of several traits implicates a 'common gene, rare allele' model of genetic variation where some genes have many individually rare alleles contributing. Most natural alleles exhibit small effect sizes with little-to-no detectable pleiotropy or epistasis. Additionally, many of these genes are locked away in low-recombination regions that encourage the formation of multi-gene blocks that may underlie maize's strong heterotic effect. Domestication left strong marks on the maize genome, and some of the differences in trait architectures may be due to different selective pressures over time. Overall, maize's advantages as a model system make it highly desirable for studying the genetics of outcrossing species, and results from it can provide insight into other such species, including humans.

摘要

玉米是世界上种植最广泛的谷物。除了在全球农业中的作用外,它长期以来一直是遗传研究的模式生物。玉米处于遗传的十字路口,因为它可以利用所有可用于植物遗传学的工具,但表现出的遗传结构与其他异交生物更相似,而与自花授粉作物和模式植物不同。在这篇综述中,我们总结了玉米遗传学的最新进展,包括用于遗传图谱和全基因组关联研究(GWAS)的强大群体的发展,以及这些研究对复杂玉米性状的潜在机制的深入了解。大多数玉米性状受大量基因控制,对几个性状的连锁分析表明存在“常见基因,稀有等位基因”遗传变异模型,其中一些基因有许多单独的稀有等位基因贡献。大多数自然等位基因的效应较小,几乎没有可检测的表型多效性或上位性。此外,许多这些基因都锁定在低重组区域中,这些区域促进了多基因块的形成,这可能是玉米强杂种优势的基础。驯化在玉米基因组上留下了深刻的印记,一些性状结构的差异可能是由于随着时间的推移不同的选择压力。总的来说,玉米作为模式系统的优势使其非常适合研究异交物种的遗传学,其结果可以为其他类似物种(包括人类)提供深入的了解。

相似文献

1
Entering the second century of maize quantitative genetics.
Heredity (Edinb). 2014 Jan;112(1):30-8. doi: 10.1038/hdy.2013.6. Epub 2013 Mar 6.
2
Genetic Architecture of Domestication-Related Traits in Maize.
Genetics. 2016 Sep;204(1):99-113. doi: 10.1534/genetics.116.191106. Epub 2016 Jul 13.
3
Genome-wide association study of leaf architecture in the maize nested association mapping population.
Nat Genet. 2011 Feb;43(2):159-62. doi: 10.1038/ng.746. Epub 2011 Jan 9.
5
Genome-wide identification and analysis of heterotic loci in three maize hybrids.
Plant Biotechnol J. 2020 Jan;18(1):185-194. doi: 10.1111/pbi.13186. Epub 2019 Jun 27.
7
Genome-wide dissection of the maize ear genetic architecture using multiple populations.
New Phytol. 2016 May;210(3):1095-106. doi: 10.1111/nph.13814. Epub 2015 Dec 30.
9
The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations.
Plant Physiol. 2017 Oct;175(2):858-873. doi: 10.1104/pp.17.00709. Epub 2017 Aug 24.

引用本文的文献

5
Mapping of QTLs for morphophysiological and yield traits under water-deficit stress and well-watered conditions in maize.
Front Plant Sci. 2023 May 8;14:1124619. doi: 10.3389/fpls.2023.1124619. eCollection 2023.
6
Special issue: Genetics of maize-microbe interactions.
Mol Plant Pathol. 2023 Jul;24(7):671-674. doi: 10.1111/mpp.13348. Epub 2023 May 20.
7
Elucidating the patterns of pleiotropy and its biological relevance in maize.
PLoS Genet. 2023 Mar 21;19(3):e1010664. doi: 10.1371/journal.pgen.1010664. eCollection 2023 Mar.
8
Genetic analyses of tropical maize lines under artificial infestation of fall armyworm and foliar diseases under optimum conditions.
Front Plant Sci. 2023 Jan 20;14:1086757. doi: 10.3389/fpls.2023.1086757. eCollection 2023.
9
Co-expression pan-network reveals genes involved in complex traits within maize pan-genome.
BMC Plant Biol. 2022 Dec 19;22(1):595. doi: 10.1186/s12870-022-03985-z.
10
A pan-Zea genome map for enhancing maize improvement.
Genome Biol. 2022 Aug 23;23(1):178. doi: 10.1186/s13059-022-02742-7.

本文引用的文献

1
THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION.
Evolution. 1998 Aug;52(4):935-949. doi: 10.1111/j.1558-5646.1998.tb01823.x.
2
The genomic signature of crop-wild introgression in maize.
PLoS Genet. 2013 May;9(5):e1003477. doi: 10.1371/journal.pgen.1003477. Epub 2013 May 9.
3
Genomewide predictions from maize single-cross data.
Theor Appl Genet. 2013 Jan;126(1):13-22. doi: 10.1007/s00122-012-1955-y. Epub 2012 Aug 11.
4
Reshaping of the maize transcriptome by domestication.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11878-83. doi: 10.1073/pnas.1201961109. Epub 2012 Jul 2.
5
ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1913-21. doi: 10.1073/pnas.1203189109. Epub 2012 Jun 18.
6
Comparative population genomics of maize domestication and improvement.
Nat Genet. 2012 Jun 3;44(7):808-11. doi: 10.1038/ng.2309.
7
Maize HapMap2 identifies extant variation from a genome in flux.
Nat Genet. 2012 Jun 3;44(7):803-7. doi: 10.1038/ng.2313.
8
Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize.
Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8872-7. doi: 10.1073/pnas.1120813109. Epub 2012 May 21.
9
Rare and common variants: twenty arguments.
Nat Rev Genet. 2012 Jan 18;13(2):135-45. doi: 10.1038/nrg3118.
10
Genomic and metabolic prediction of complex heterotic traits in hybrid maize.
Nat Genet. 2012 Jan 15;44(2):217-20. doi: 10.1038/ng.1033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验