Suppr超能文献

相似文献

1
Reshaping of the maize transcriptome by domestication.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11878-83. doi: 10.1073/pnas.1201961109. Epub 2012 Jul 2.
4
The potential role of genetic assimilation during maize domestication.
PLoS One. 2017 Sep 8;12(9):e0184202. doi: 10.1371/journal.pone.0184202. eCollection 2017.
5
Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication.
Mol Ecol Resour. 2016 Nov;16(6):1465-1477. doi: 10.1111/1755-0998.12526. Epub 2016 Mar 31.
6
The genetic architecture of teosinte catalyzed and constrained maize domestication.
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5643-5652. doi: 10.1073/pnas.1820997116. Epub 2019 Mar 6.
7
Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte.
PLoS Genet. 2021 Dec 20;17(12):e1009797. doi: 10.1371/journal.pgen.1009797. eCollection 2021 Dec.
8
Comparative population genomics of maize domestication and improvement.
Nat Genet. 2012 Jun 3;44(7):808-11. doi: 10.1038/ng.2309.
9
Genetic Architecture of Domestication-Related Traits in Maize.
Genetics. 2016 Sep;204(1):99-113. doi: 10.1534/genetics.116.191106. Epub 2016 Jul 13.
10
Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte.
Plant Cell. 2019 Sep;31(9):1990-2009. doi: 10.1105/tpc.19.00111. Epub 2019 Jun 21.

引用本文的文献

3
The origins and spread of the opium poppy ( L.) revealed by genomics and seed morphometrics.
Philos Trans R Soc Lond B Biol Sci. 2025 May;380(1926):20240198. doi: 10.1098/rstb.2024.0198. Epub 2025 May 15.
4
Network properties constrain natural selection on gene expression in .
bioRxiv. 2025 Feb 24:2025.02.19.639144. doi: 10.1101/2025.02.19.639144.
8
Gene expression and alternative splicing contribute to adaptive divergence of ecotypes.
Heredity (Edinb). 2024 Mar;132(3):120-132. doi: 10.1038/s41437-023-00665-y. Epub 2023 Dec 9.
9
Fluctuation of ecological niches and geographic range shifts along chile pepper's domestication gradient.
Ecol Evol. 2023 Nov 28;13(11):e10731. doi: 10.1002/ece3.10731. eCollection 2023 Nov.
10
ZmEREB92 plays a negative role in seed germination by regulating ethylene signaling and starch mobilization in maize.
PLoS Genet. 2023 Nov 17;19(11):e1011052. doi: 10.1371/journal.pgen.1011052. eCollection 2023 Nov.

本文引用的文献

1
Comparative population genomics of maize domestication and improvement.
Nat Genet. 2012 Jun 3;44(7):808-11. doi: 10.1038/ng.2309.
2
3
Genome-wide atlas of transcription during maize development.
Plant J. 2011 May;66(4):553-63. doi: 10.1111/j.1365-313X.2011.04527.x. Epub 2011 Mar 9.
4
MADS-box genes of maize: frequent targets of selection during domestication.
Genet Res (Camb). 2011 Feb;93(1):65-75. doi: 10.1017/S0016672310000509. Epub 2010 Dec 14.
5
Influence of cryptic population structure on observed mating patterns in the wild progenitor of maize (Zea mays ssp. parviglumis).
Mol Ecol. 2011 Jan;20(1):46-55. doi: 10.1111/j.1365-294X.2010.04924.x. Epub 2010 Nov 11.
6
Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor.
Genome Res. 2010 Dec;20(12):1689-99. doi: 10.1101/gr.109165.110. Epub 2010 Oct 29.
7
Genetic perspectives on crop domestication.
Trends Plant Sci. 2010 Sep;15(9):529-37. doi: 10.1016/j.tplants.2010.05.008. Epub 2010 Jun 10.
8
The B73 maize genome: complexity, diversity, and dynamics.
Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.
9
The genetic architecture of maize flowering time.
Science. 2009 Aug 7;325(5941):714-8. doi: 10.1126/science.1174276.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验