Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, 35020 Legnaro (PD), Italy.
J Anim Sci. 2013 May;91(5):2057-66. doi: 10.2527/jas.2012-5386. Epub 2013 Mar 5.
The aim of this study was to investigate genetic relationships between beef traits of station-tested young bulls and carcass and meat quality traits (MQ) of commercial intact males in Piemontese cattle. Phenotypes for daily gain (DG) and live fleshiness traits (width at withers: WW; shoulder muscularity: SM; loin width: LW; loin thickness: LT; thigh muscularity: TM; thigh profile: TP) and thinness of the shin bone (BT) were available for 3,109 and 2,183 performance-tested young bulls, respectively. Carcass daily gain (CDG), carcass conformation (SEUS), pH at 24 h (pH24h) and 8 d after slaughter (pH8d), lightness (L*), redness (a*), yellowness (b*), hue angle (HA), saturation index (SI), drip loss (DL), cooking loss (CL), and shear force (SF) were assessed for 1,208 commercial intact males. (Co) variance components were estimated in a set of twelve 9-traits analyses using REML and linear animal models including all performance-test traits and 1 carcass or MQ trait at a time. Heritabilities ± SE of beef traits ranged from 0.26 ± 0.03 (LW) to 0.47 ± 0.01 (DG), whereas those of carcass traits and MQ from 0.06 ± 0.03 (CL) to 0.63 ± 0.04 (HA). The genetic correlation (rg) between DG and CDG was 0.75 ± 0.10, indicating that DG, as measured at the test station, is a good indicator of the carcass gain achieved by commercial animals under farms conditions. Daily BW gain of station-tested bulls correlated positively with color traits (from 0.11 ± 0.12 to 0.54 ± 0.09), ph8d (rg ± SE = 0.31 ± 0.11), DL (rg ± SE = 0.29 ± 0.17), and CL (rg ± SE = 0.27 ± 0.18). Live fleshiness of station-tested bulls exhibited genetic correlations with MQ of commercial animals that were positive for L* and b* (from 0.13 ± 0.08 to 0.65 ± 0.14) and negative for pH (from -0.27 ± 0.15 to -0.57 ± 0.11), CL (from -0.16 ± 0.23 to -0.43 ± 0.22), and SF (TM: rg ± SE = -0.31 ± 0.15; TP: rg ± SE = -0.41 ± 0.17). The thinness of the shin bone correlated unfavorably with CDG (rg ± SE = -0.74 ± 0.07) and favorably with SEUS (rg ± SE = 0.65 ± 0.17), CL (rg ± SE = -0.39 ± 0.13), and SF (rg ± SE = -0.32 ± 0.17). The estimated genetic correlations indicate that selection to increase DG, as measured at the test station, exerts moderate adverse effects on MQ. Because selection emphasis is greater for live fleshiness than for DG, the correlated response in MQ and carcass traits is expected to be influenced to a greater extent by selection for muscularity, even though these traits are less heritable than DG.
本研究旨在调查皮埃蒙特牛中,经过站测的年轻公牛的牛肉特性与商业纯种公牛皮下和肉质特性(MQ)之间的遗传关系。对于 3109 头经过性能测试的年轻公牛,可获得日增重(DG)和活体肉质性状(肩宽:WW;肩部肌肉度:SM;腰宽:LW;腰厚:LT;大腿肌肉度:TM;大腿轮廓:TP)以及小腿骨薄度(BT)的表型数据。对于 1208 头商业纯种公牛,评估了 carcass daily gain(CDG)、carcass conformation(SEUS)、24 小时后 pH(pH24h)和 8 天后 pH(pH8d)、亮度(L*)、红色度(a*)、黄度(b*)、色调角(HA)、饱和度指数(SI)、滴水损失(DL)、蒸煮损失(CL)和剪切力(SF)。使用 REML 和线性动物模型,在 12 个 9 个性状分析中,对所有性能测试性状和每次 1 个 carcass 或 MQ 性状的协方差分量进行了估计。牛肉性状的遗传力±SE 范围为 0.26±0.03(LW)至 0.47±0.01(DG),而 carcass 性状和 MQ 的遗传力为 0.06±0.03(CL)至 0.63±0.04(HA)。DG 和 CDG 之间的遗传相关(rg)为 0.75±0.10,表明在测试站测量的 DG 是商业动物在农场条件下获得的 carcass 增益的良好指标。站测公牛的每日 BW 增益与颜色性状(从 0.11±0.12 到 0.54±0.09)、ph8d(rg±SE=0.31±0.11)、DL(rg±SE=0.29±0.17)和 CL(rg±SE=0.27±0.18)呈正相关。站测公牛的活体肉质性状与商业动物的 MQ 存在遗传相关性,对于 L和 b(从 0.13±0.08 到 0.65±0.14)呈正相关,对于 pH(从-0.27±0.15 到-0.57±0.11)、CL(从-0.16±0.23 到-0.43±0.22)和 SF(TM:rg±SE=-0.31±0.15;TP:rg±SE=-0.41±0.17)呈负相关。小腿骨的薄度与 CDG(rg±SE=-0.74±0.07)呈不利相关,与 SEUS(rg±SE=0.65±0.17)呈有利相关,与 CL(rg±SE=-0.39±0.13)和 SF(rg±SE=-0.32±0.17)呈有利相关。估计的遗传相关性表明,选择在测试站测量的 DG 增加会对 MQ 产生适度的不利影响。由于活体肉质的选择重点大于 DG,因此 MQ 和 carcass 性状的相关反应预计将受到肌肉度选择的更大影响,尽管这些性状的遗传力低于 DG。