School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Qld 4001, Australia.
Chemistry. 2013 Apr 26;19(18):5731-41. doi: 10.1002/chem.201203961. Epub 2013 Mar 5.
Nitrogen-doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400-700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N-doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface-bonded N species, whereas the core remains N doped. N-Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible-light irradiation. The surface-oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N-doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N-doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible-light-driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N-doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N-doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.
氮掺杂锐钛矿相和 TiO2(B)相的 TiO2 纳米纤维是通过在 400-700°C 下将层状结构的钛酸盐纳米纤维与气态 NH3 反应合成的,其反应机制与 TiO2 的直接氮掺杂不同。通过在空气中进行简单的煅烧,可以调节氮掺杂 TiO2 纳米纤维的表面,从而去除表面结合的 N 物种,而核仍然保持 N 掺杂状态。只有在空气中煅烧后,氮掺杂 TiO2 纳米纤维才成为在可见光照射下分解 sulforhodamine B 的有效光催化剂。事实证明,表面氧化的表面层非常有利于有机分子的吸附和氧分子的活化,而纤维内部的剩余 N 掺杂部分则强烈吸收可见光,从而产生电子和空穴。氮掺杂纳米纤维还被用作金纳米粒子(Au NP)光催化剂的载体,用于可见光驱动的苯乙炔与苯胺的氢胺化反应。苯乙炔在纳米纤维的氮掺杂表面上被激活,而苯胺在 Au NPs 上被激活。Au NPs 吸附在氮掺杂 TiO2(B)纳米纤维上时,在 40°C 下的转化率(苯乙炔 80%)明显高于吸附在未掺杂纤维上时(46%),产物中 95%是所需的亚胺。表面 N 物种可以防止不利于氢胺化反应的 O2 的吸附,从而提高光催化活性。去除表面 N 物种会导致光催化活性急剧下降。这些光催化剂适用于实际应用,因为由于其纤维形态,它们可以很容易地分散在溶液中,并通过过滤、沉淀或离心从液体中分离出来。