Suppr超能文献

基于双麦克风阵列和卡尔曼滤波器的质点速度估计。

Particle velocity estimation based on a two-microphone array and Kalman filter.

机构信息

Department of Power Mechanical Engineering, National Tsing-Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.

出版信息

J Acoust Soc Am. 2013 Mar;133(3):1425-32. doi: 10.1121/1.4788986.

Abstract

A traditional method to measure particle velocity is based on the finite difference (FD) approximation of pressure gradient by using a pair of well matched pressure microphones. This approach is known to be sensitive to sensor noise and mismatch. Recently, a double hot-wire sensor termed Microflown became available in light of micro-electro-mechanical system technology. This sensor eliminates the robustness issue of the conventional FD-based methods. In this paper, an alternative two-microphone approach termed the u-sensor is developed from the perspective of robust adaptive filtering. With two ordinary microphones, the proposed u-sensor does not require novel fabrication technology. In the method, plane wave and spherical wave models are employed in the formulation of a Kalman filter with process and measurement noise taken into account. Both numerical and experimental investigations were undertaken to validate the proposed u-sensor technique. The results have shown that the proposed approach attained better performance than the FD method, and comparable performance to a Microflown sensor.

摘要

一种传统的测量粒子速度的方法是基于有限差分(FD)逼近压力梯度,使用一对匹配良好的压力麦克风。这种方法对传感器噪声和失配很敏感。最近,一种称为 Microflown 的双热线传感器由于微机电系统技术而问世。该传感器消除了传统基于 FD 的方法的稳健性问题。在本文中,从稳健自适应滤波的角度出发,开发了一种称为 u 传感器的替代双麦克风方法。使用两个普通麦克风,所提出的 u 传感器不需要新颖的制造技术。在该方法中,平面波和球面波模型被用于卡尔曼滤波器的公式中,同时考虑了过程和测量噪声。进行了数值和实验研究来验证所提出的 u 传感器技术。结果表明,所提出的方法比 FD 方法具有更好的性能,并且与 Microflown 传感器的性能相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验