Berhouma Moncef, Baidya Nishanta B, Ismaïl Abdelhay A, Zhang Jun, Ammirati Mario
Dardinger Microneurosurgical Skull Base Lab, Ohio State University Medical Center, Columbus, OH 43210, USA.
Clin Neurol Neurosurg. 2013 Sep;115(9):1635-41. doi: 10.1016/j.clineuro.2013.02.013. Epub 2013 Mar 5.
Endoscopic endonasal skull base surgery attracts an increasing number of young neurosurgeons. This recent technique requires specific technical skills for the approaches to non-pituitary tumors (expanded endoscopic endonasal surgery). Actual residents' busy schedules carry the risk of compromising their laboratory training by limiting significantly the dedicated time for dissections.
To enhance and shorten the learning curve in expanded endoscopic endonasal skull base surgery, we propose a reproducible model based on the implantation of a polymer via an intracranial route to provide a pathological retro-infundibular expansive lesion accessible to a virgin expanded endoscopic endonasal route, avoiding the ethically-debatable need to hundreds of pituitary cases in live patients before acquiring the desired skills.
A polymer-based tumor model was implanted in 6 embalmed human heads via a microsurgical right fronto-temporal approach through the carotido-oculomotor cistern to mimic a retro-infundibular tumor. The tumor's position was verified by CT-scan. An endoscopic endonasal trans-sphenoidal trans-tubercular trans-planum approach was then carried out on a virgin route under neuronavigation tracking.
Dissection of the tumor model from displaced surrounding neurovascular structures reproduced live surgery's sensations and challenges. Post-implantation CT-scan allowed the pre-removal assessment of the tumor insertion, its relationships as well as naso-sphenoidal anatomy in preparation of the endoscopic approach.
Training on easily reproducible retro-infundibular approaches in a context of pathological distorted anatomy provides a unique opportunity to avoid the need for repetitive live surgeries to acquire skills for this kind of rare tumors, and may shorten the learning curve for endoscopic endonasal surgery.
鼻内镜下经鼻颅底手术吸引了越来越多的年轻神经外科医生。这种最新技术在治疗非垂体肿瘤(扩大鼻内镜下经鼻手术)时需要特定的技术技能。实际住院医师繁忙的日程安排存在风险,因为这会通过大幅限制专门用于解剖的时间而影响他们的实验室训练。
为了提高并缩短扩大鼻内镜下经鼻颅底手术的学习曲线,我们提出一种可重复的模型,该模型基于通过颅内途径植入一种聚合物,以提供一个可供初次使用扩大鼻内镜下经鼻途径操作的病理性漏斗后扩张性病变,避免了在获得所需技能之前需要对数百例活体患者进行垂体手术这一在伦理上存在争议的需求。
通过显微外科右额颞入路,经颈内动脉 - 动眼神经池,将基于聚合物的肿瘤模型植入6个防腐处理的人类头颅中,以模拟漏斗后肿瘤。通过CT扫描验证肿瘤的位置。然后在神经导航跟踪下,在一条初次使用的路径上进行鼻内镜下经蝶窦、经结节、经筛板入路。
从移位的周围神经血管结构中分离肿瘤模型再现了活体手术的感觉和挑战。植入后CT扫描可在切除前评估肿瘤的植入情况、其关系以及鼻 - 蝶窦解剖结构,为内镜手术做准备。
在病理性解剖结构扭曲的情况下,对易于重复的漏斗后入路进行训练提供了一个独特的机会,可避免为获得此类罕见肿瘤的手术技能而进行重复的活体手术,并且可能缩短鼻内镜下手术的学习曲线。