Universidade Federal do Rio Grande do Norte, Instituto de Química, Programa de Pós-Graduação em Química, Grupo de Pesquisa em Quimiometria Aplicada, CEP 59072-970 - Natal, RN, Brazil.
J Microbiol Methods. 2013 May;93(2):90-4. doi: 10.1016/j.mimet.2013.02.003. Epub 2013 Mar 5.
This study shows the application and usefulness of near infrared (NIR) transflectance spectra measurements in the identification and classification of Escherichia coli and Salmonella Enteritidis from commercial fruit pulp (pineapple). Principal component analysis (PCA), soft independent modeling of class analogy (SIMCA) analysis and partial least-squares discriminant analysis (PLS-DA) were used in the analysis. It was not possible to obtain total separation between the samples using PCA and SIMCA. PLS-DA presented good performance achieving prediction ability of 87.5% for E. coli and 88.3% for S. Enteritidis, respectively. For the best models, the sensitivity and specificity was 0.87 and 0.83 for PLS-DA with second derivative spectra. These results suggest that NIR spectroscopy and PLS-DA can be used to discriminate and detect bacteria in fruit pulp for modeling linear class boundaries.
本研究展示了近红外(NIR)反射光谱测量在识别和分类商业果浆(菠萝)中的大肠杆菌和肠炎沙门氏菌中的应用和有效性。主成分分析(PCA)、软独立建模分类类比(SIMCA)分析和偏最小二乘判别分析(PLS-DA)用于分析。使用 PCA 和 SIMCA 无法实现样品的完全分离。PLS-DA 表现出良好的性能,分别对大肠杆菌和肠炎沙门氏菌的预测能力达到 87.5%和 88.3%。对于最佳模型,二阶导数光谱的 PLS-DA 的灵敏度和特异性分别为 0.87 和 0.83。这些结果表明,近红外光谱和 PLS-DA 可用于区分和检测果浆中的细菌,用于建模线性类别边界。