Suppr超能文献

基于截短白喉毒素的重组猪 CTLA-4 融合毒素。

A truncated diphtheria toxin based recombinant porcine CTLA-4 fusion toxin.

机构信息

Transplantation Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.

出版信息

J Immunol Methods. 2013 May 31;391(1-2):103-11. doi: 10.1016/j.jim.2013.02.015. Epub 2013 Mar 5.

Abstract

Targeted cell therapies are possible through the generation of recombinant fusion proteins that combine a toxin, such as diphtheria toxin (DT), with an antibody or other molecule that confers specificity. Upon binding of the fusion protein to the cell of interest, the diphtheria toxin is internalized which results in protein synthesis inhibition and subsequent cell death. We have recently expressed and purified the recombinant soluble porcine CTLA-4 both with and without N-glycosylation in yeast Pichia pastoris for in vivo use in our preclinical swine model. The glycosylated and non-N-glycosylated versions of this recombinant protein each bind to a porcine CD80 expressing B-cell lymphoma line (LCL13271) with equal affinity (K(D)=13 nM). In this study we have linked each of the glycosylated and non-N-glycosylated soluble porcine CTLA-4 proteins to the truncated diphtheria toxin DT390 through genetic engineering yielding three versions of the porcine CTLA-4 fusion toxins: 1) monovalent glycosylated soluble porcine CTLA-4 fusion toxin; 2) monovalent non-N-glycosylated soluble porcine CTLA-4 fusion toxin and 3) bivalent non-N-glycosylated soluble porcine CTLA-4 fusion toxin. Protein synthesis inhibition analysis demonstrated that while all three fusion toxins are capable of inhibiting protein synthesis in vitro, the non-N-glycosylated porcine CTLA-4 isoforms function most efficiently. Binding analysis using flow cytometry of the porcine CTLA-4 fusion toxins to LCL13271 cells also demonstrated that the non-N-glycosylated porcine CTLA-4 isoforms bind to these cells with higher affinity compared to the glycosylated fusion toxin. The monovalent non-N-glycosylated porcine CTLA-4 fusion toxin was tested in vivo. NSG (NOD/SCID IL-2 receptor γ(-)/(-)) mice were injected with porcine CD80(+) LCL13271 tumor cells. All animals succumbed to tumors and those treated with the monovalent non-N-glycosylated porcine CTLA-4 fusion toxin survived longer based on a symptomatic scoring system compared to the untreated controls. This recombinant protein may therefore provide a novel approach for in vivo depletion of porcine antigen presenting cells (APCs) for studies investigating the induction of transplantation tolerance, autoimmune disease and cancer treatment.

摘要

靶向细胞疗法是通过生成重组融合蛋白来实现的,这些融合蛋白将毒素(如白喉毒素 (DT))与抗体或其他赋予特异性的分子结合。当融合蛋白与靶细胞结合时,白喉毒素被内化,导致蛋白质合成抑制和随后的细胞死亡。我们最近在毕赤酵母中表达和纯化了具有和不具有 N-糖基化的重组可溶性猪 CTLA-4,用于我们的临床前猪模型中的体内使用。该重组蛋白的糖基化和非 N-糖基化版本都以相等的亲和力(K(D)=13 nM)结合表达猪 CD80 的 B 细胞淋巴瘤系 (LCL13271)。在这项研究中,我们通过基因工程将每个糖基化和非 N-糖基化的可溶性猪 CTLA-4 蛋白与截短的白喉毒素 DT390 连接,得到了三种猪 CTLA-4 融合毒素:1)单价糖基化可溶性猪 CTLA-4 融合毒素;2)单价非 N-糖基化可溶性猪 CTLA-4 融合毒素和 3)二价非 N-糖基化可溶性猪 CTLA-4 融合毒素。蛋白质合成抑制分析表明,虽然所有三种融合毒素都能够在体外抑制蛋白质合成,但非 N-糖基化的猪 CTLA-4 同工型的作用效率最高。使用流式细胞术分析猪 CTLA-4 融合毒素与 LCL13271 细胞的结合也表明,与糖基化融合毒素相比,非 N-糖基化的猪 CTLA-4 同工型与这些细胞的结合具有更高的亲和力。单价非 N-糖基化的猪 CTLA-4 融合毒素在体内进行了测试。NSG(NOD/SCID IL-2 受体 γ(-)/(-))小鼠注射了猪 CD80(+) LCL13271 肿瘤细胞。所有动物都因肿瘤而死亡,与未治疗的对照组相比,用单价非 N-糖基化的猪 CTLA-4 融合毒素治疗的动物根据症状评分系统存活时间更长。因此,这种重组蛋白可能为体内耗尽猪抗原呈递细胞 (APC) 提供一种新方法,用于研究诱导移植耐受、自身免疫性疾病和癌症治疗。

相似文献

1
A truncated diphtheria toxin based recombinant porcine CTLA-4 fusion toxin.
J Immunol Methods. 2013 May 31;391(1-2):103-11. doi: 10.1016/j.jim.2013.02.015. Epub 2013 Mar 5.
2
Development of a diphtheria toxin-based recombinant porcine IL-2 fusion toxin for depleting porcine CD25+ cells.
J Immunol Methods. 2013 Dec 15;398-399:33-43. doi: 10.1016/j.jim.2013.09.006. Epub 2013 Sep 18.
3
Expression and purification of soluble porcine CTLA-4 in yeast Pichia pastoris.
Protein Expr Purif. 2012 Apr;82(2):270-8. doi: 10.1016/j.pep.2012.01.012. Epub 2012 Feb 2.
4
Diphtheria toxin-based bivalent human IL-2 fusion toxin with improved efficacy for targeting human CD25(+) cells.
J Immunol Methods. 2014 Mar;405:57-66. doi: 10.1016/j.jim.2014.01.008. Epub 2014 Jan 24.
5
Ontak-like human IL-2 fusion toxin.
J Immunol Methods. 2017 Sep;448:51-58. doi: 10.1016/j.jim.2017.05.008. Epub 2017 May 24.
6
Diphtheria toxin-based recombinant murine IL-2 fusion toxin for depleting murine regulatory T cells in vivo.
Protein Eng Des Sel. 2014 Sep;27(9):289-95. doi: 10.1093/protein/gzu034.
7
Diphtheria-toxin based anti-human CCR4 immunotoxin for targeting human CCR4(+) cells in vivo.
Mol Oncol. 2015 Aug;9(7):1458-70. doi: 10.1016/j.molonc.2015.04.004. Epub 2015 Apr 25.
8
Molecular basis of cross-species reactivities of human versus porcine CTLA-4.
Hum Immunol. 2013 Jul;74(7):842-8. doi: 10.1016/j.humimm.2013.04.002. Epub 2013 Apr 18.
10
Development of a diphtheria toxin based antiporcine CD3 recombinant immunotoxin.
Bioconjug Chem. 2011 Oct 19;22(10):2014-20. doi: 10.1021/bc200230h. Epub 2011 Sep 9.

引用本文的文献

1
Recent research and clinical progress of CTLA-4-based immunotherapy for breast cancer.
Front Oncol. 2023 Oct 4;13:1256360. doi: 10.3389/fonc.2023.1256360. eCollection 2023.
2
Recent advances in antigen targeting to antigen-presenting cells in veterinary medicine.
Front Immunol. 2023 Mar 10;14:1080238. doi: 10.3389/fimmu.2023.1080238. eCollection 2023.
4
Ontak-like human IL-2 fusion toxin.
J Immunol Methods. 2017 Sep;448:51-58. doi: 10.1016/j.jim.2017.05.008. Epub 2017 May 24.
5
Diphtheria toxin-based anti-human CD19 immunotoxin for targeting human CD19 tumors.
Mol Oncol. 2017 May;11(5):584-594. doi: 10.1002/1878-0261.12056. Epub 2017 Apr 4.
6
Diphtheria-toxin based anti-human CCR4 immunotoxin for targeting human CCR4(+) cells in vivo.
Mol Oncol. 2015 Aug;9(7):1458-70. doi: 10.1016/j.molonc.2015.04.004. Epub 2015 Apr 25.
7
Diphtheria toxin-based bivalent human IL-2 fusion toxin with improved efficacy for targeting human CD25(+) cells.
J Immunol Methods. 2014 Mar;405:57-66. doi: 10.1016/j.jim.2014.01.008. Epub 2014 Jan 24.

本文引用的文献

1
Expression and purification of soluble porcine CTLA-4 in yeast Pichia pastoris.
Protein Expr Purif. 2012 Apr;82(2):270-8. doi: 10.1016/j.pep.2012.01.012. Epub 2012 Feb 2.
2
Belatacept: from rational design to clinical application.
Transpl Int. 2012 Feb;25(2):139-50. doi: 10.1111/j.1432-2277.2011.01386.x. Epub 2011 Dec 7.
3
Development of a diphtheria toxin based antiporcine CD3 recombinant immunotoxin.
Bioconjug Chem. 2011 Oct 19;22(10):2014-20. doi: 10.1021/bc200230h. Epub 2011 Sep 9.
4
The programmed death-1 ligand 1:B7-1 pathway restrains diabetogenic effector T cells in vivo.
J Immunol. 2011 Aug 1;187(3):1097-105. doi: 10.4049/jimmunol.1003496. Epub 2011 Jun 22.
5
The novel costimulatory programmed death ligand 1/B7.1 pathway is functional in inhibiting alloimmune responses in vivo.
J Immunol. 2011 Aug 1;187(3):1113-9. doi: 10.4049/jimmunol.1100056. Epub 2011 Jun 22.
6
Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4.
Science. 2011 Apr 29;332(6029):600-3. doi: 10.1126/science.1202947. Epub 2011 Apr 7.
7
Establishment of transplantable porcine tumor cell lines derived from MHC-inbred miniature swine.
Blood. 2007 Dec 1;110(12):3996-4004. doi: 10.1182/blood-2007-02-074450. Epub 2007 Aug 16.
8
A fold-back single-chain diabody format enhances the bioactivity of an anti-monkey CD3 recombinant diphtheria toxin-based immunotoxin.
Protein Eng Des Sel. 2007 Sep;20(9):425-32. doi: 10.1093/protein/gzm040. Epub 2007 Aug 10.
10
Gene optimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris.
Protein Expr Purif. 2002 Jul;25(2):270-82. doi: 10.1016/s1046-5928(02)00009-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验