Suppr超能文献

丝状蛋白聚集中的静电效应。

Electrostatic effects in filamentous protein aggregation.

机构信息

Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.

出版信息

Biophys J. 2013 Mar 5;104(5):1116-26. doi: 10.1016/j.bpj.2013.01.031.

Abstract

Electrostatic forces play a key role in mediating interactions between proteins. However, gaining quantitative insights into the complex effects of electrostatics on protein behavior has proved challenging, due to the wide palette of scenarios through which both cations and anions can interact with polypeptide molecules in a specific manner or can result in screening in solution. In this article, we have used a variety of biophysical methods to probe the steady-state kinetics of fibrillar protein self-assembly in a highly quantitative manner to detect how it is modulated by changes in solution ionic strength. Due to the exponential modulation of the reaction rate by electrostatic forces, this reaction represents an exquisitely sensitive probe of these effects in protein-protein interactions. Our approach, which involves a combination of experimental kinetic measurements and theoretical analysis, reveals a hierarchy of electrostatic effects that control protein aggregation. Furthermore, our results provide a highly sensitive method for the estimation of the magnitude of binding of a variety of ions to protein molecules.

摘要

静电相互作用力在介导蛋白质相互作用中起着关键作用。然而,由于阳离子和阴离子可以以特定的方式与多肽分子相互作用,或者在溶液中发生屏蔽,因此获得对静电对蛋白质行为的复杂影响的定量见解一直具有挑战性。在本文中,我们使用各种生物物理方法以高度定量的方式探测纤维状蛋白质自组装的稳态动力学,以检测其如何被溶液离子强度的变化所调节。由于静电相互作用力对反应速率的指数调制,这种反应是蛋白质-蛋白质相互作用中这些影响的极其灵敏的探针。我们的方法涉及实验动力学测量和理论分析的结合,揭示了控制蛋白质聚集的静电效应的层次结构。此外,我们的结果提供了一种高度灵敏的方法来估计各种离子与蛋白质分子结合的程度。

相似文献

1
Electrostatic effects in filamentous protein aggregation.
Biophys J. 2013 Mar 5;104(5):1116-26. doi: 10.1016/j.bpj.2013.01.031.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.
Langmuir. 2010 Dec 21;26(24):18916-25. doi: 10.1021/la103080a. Epub 2010 Nov 16.
5
Effect of electrostatics on aggregation of prion protein Sup35 peptide.
J Phys Condens Matter. 2012 Apr 25;24(16):164205. doi: 10.1088/0953-8984/24/16/164205. Epub 2012 Mar 30.
6
Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain.
J Mol Biol. 2001 Aug 10;311(2):325-40. doi: 10.1006/jmbi.2001.4858.
7
Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide.
Biomacromolecules. 2015 Dec 14;16(12):3792-801. doi: 10.1021/acs.biomac.5b01092. Epub 2015 Nov 23.
8
Suppression of insulin aggregation by heparin.
Biomacromolecules. 2008 Sep;9(9):2338-44. doi: 10.1021/bm8002557. Epub 2008 Aug 13.
10
Hydrophobic collapse overrides Coulombic repulsion in ferricytochrome c fibrillation under extremely alkaline condition.
Arch Biochem Biophys. 2012 Dec 1;528(1):67-71. doi: 10.1016/j.abb.2012.08.013. Epub 2012 Sep 8.

引用本文的文献

1
Application of a Rational Crystal Contact Engineering Strategy on a Poly(ethylene terephthalate)-Degrading Cutinase.
Bioengineering (Basel). 2025 May 23;12(6):561. doi: 10.3390/bioengineering12060561.
2
Global kinetic model of lipid-induced -synuclein aggregation and its inhibition by small molecules.
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2422427122. doi: 10.1073/pnas.2422427122. Epub 2025 Jun 25.
3
The mechanism of amyloid fibril growth from Φ-value analysis.
Nat Chem. 2025 Mar;17(3):403-411. doi: 10.1038/s41557-024-01712-9. Epub 2025 Jan 16.
5
Atomic resolution structure of full-length human insulin fibrils.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2401458121. doi: 10.1073/pnas.2401458121. Epub 2024 May 29.
6
Molecular mechanism of α-synuclein aggregation on lipid membranes revealed.
Chem Sci. 2024 Apr 22;15(19):7229-7242. doi: 10.1039/d3sc05661a. eCollection 2024 May 15.
7
Thermodynamic characterization of amyloid polymorphism by microfluidic transient incomplete separation.
Chem Sci. 2024 Jan 8;15(7):2528-2544. doi: 10.1039/d3sc05371g. eCollection 2024 Feb 14.
9
How can we discover developable antibody-based biotherapeutics?
Front Mol Biosci. 2023 Aug 7;10:1221626. doi: 10.3389/fmolb.2023.1221626. eCollection 2023.

本文引用的文献

1
Detailed analysis of the energy barriers for amyloid fibril growth.
Angew Chem Int Ed Engl. 2012 May 21;51(21):5247-51. doi: 10.1002/anie.201108040. Epub 2012 Apr 5.
2
The mechanism of enhanced insulin amyloid fibril formation by NaCl is better explained by a conformational change model.
PLoS One. 2011;6(11):e27906. doi: 10.1371/journal.pone.0027906. Epub 2011 Nov 21.
3
Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments.
J Chem Phys. 2011 Aug 14;135(6):065105. doi: 10.1063/1.3608916.
4
Population of nonnative states of lysozyme variants drives amyloid fibril formation.
J Am Chem Soc. 2011 May 25;133(20):7737-7743. doi: 10.1021/ja109620d. Epub 2011 Apr 29.
5
Frequency factors in a landscape model of filamentous protein aggregation.
Phys Rev Lett. 2010 Jun 4;104(22):228101. doi: 10.1103/PhysRevLett.104.228101. Epub 2010 Jun 1.
6
Salt-induced modulation of the pathway of amyloid fibril formation by the mouse prion protein.
Biochemistry. 2010 Sep 7;49(35):7615-24. doi: 10.1021/bi100745j.
7
Surface attachment of protein fibrils via covalent modification strategies.
J Phys Chem B. 2010 Sep 2;114(34):10925-38. doi: 10.1021/jp101579n.
8
An analytical solution to the kinetics of breakable filament assembly.
Science. 2009 Dec 11;326(5959):1533-7. doi: 10.1126/science.1178250.
9
The Hofmeister effect on amyloid formation using yeast prion protein.
Protein Sci. 2010 Jan;19(1):47-56. doi: 10.1002/pro.281.
10
Influence of electrostatic interactions on the fibrillation process of human serum albumin.
J Phys Chem B. 2009 Jul 30;113(30):10521-9. doi: 10.1021/jp902224d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验