Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States.
ACS Appl Mater Interfaces. 2013 Apr 10;5(7):2479-84. doi: 10.1021/am302740z. Epub 2013 Mar 29.
This manuscript describes the synthesis of uniform monodisperse SnO2-coated gold nanoparticles and examines their colloidal stability as function of pH, with direct comparison to better known and widely used SiO2-coated gold nanoparticles. Aqueous acidic and basic colloidal SnO2-coated and SiO2-coated Au nanoparticle solutions were prepared, and their stability was monitored visually and by UV-vis spectroscopy. Notably, the SnO2-coated Au nanoparticle solutions were stable up to pH 12.5. However, at pH 13 and 14, the SnO2-coated Au nanoparticles underwent aggregation, which could be fully reversed upon neutralization of the solutions. In contrast, the SiO2-coated Au nanoparticle solutions were unstable at pH>10.5, irreversibly producing a precipitate composed of bare Au nanoparticle aggregates having little or no silica coating. Under acidic conditions, sedimentation was observed from both the colloidal SnO2-coated and SiO2-coated Au nanoparticle solutions, but the colloidal solutions could be reconstituted upon neutralization of the acidic solutions. The sedimentation at low pH coincided with the reported isoelectric pH values of SiO2 and SnO2, respectively. From an applications perspective, we are seeking to develop SnO2-coated metal nanoparticles as stable alternatives to the more widely employed SiO2-coated nanoparticles, with a particular emphasis on their use in sensor devices and solar cells.
本文描述了均一单分散 SnO2 包覆金纳米粒子的合成,并考察了其胶体稳定性随 pH 值的变化,与更为人熟知且广泛应用的 SiO2 包覆金纳米粒子进行了直接比较。制备了酸性和碱性的 SnO2 包覆和 SiO2 包覆的 Au 纳米粒子胶体溶液,并通过目视观察和紫外可见光谱监测其稳定性。值得注意的是,SnO2 包覆的 Au 纳米粒子溶液在 pH 值 12.5 以下稳定。然而,在 pH 值 13 和 14 时,SnO2 包覆的 Au 纳米粒子发生聚集,溶液的中和可以完全逆转这一过程。相比之下,SiO2 包覆的 Au 纳米粒子溶液在 pH 值>10.5 时不稳定,不可逆地生成由裸露的 Au 纳米粒子聚集物组成的沉淀物,这些聚集物几乎没有或没有二氧化硅包覆。在酸性条件下,从胶体 SnO2 包覆和 SiO2 包覆的 Au 纳米粒子溶液中都观察到了沉淀,但酸性溶液的中和可以重新形成胶体溶液。在低 pH 值下的沉淀与 SiO2 和 SnO2 的报道等电 pH 值相对应。从应用的角度来看,我们正在寻求开发 SnO2 包覆的金属纳米粒子作为更广泛应用的 SiO2 包覆纳米粒子的稳定替代品,特别强调它们在传感器设备和太阳能电池中的应用。