Suppr超能文献

骨水泥-骨界面微联锁区域中的流固相互作用。

Fluid-structure interactions in micro-interlocked regions of the cement-bone interface.

作者信息

Mann Kenneth A, Miller Mark A

机构信息

a Department of Orthopaedic Surgery, Musculoskeletal Science Research Center , SUNY Upstate Medical University , 3216 IHP, 750 East Adams Street, Syracuse , NY 13210 , USA .

出版信息

Comput Methods Biomech Biomed Engin. 2014;17(16):1809-20. doi: 10.1080/10255842.2013.767336. Epub 2013 Mar 12.

Abstract

Experimental tests and computational modelling were used to explore the fluid dynamics at the trabeculae-cement interlock regions found in the tibial component of total knee replacements. A cement-bone construct of the proximal tibia was created to simulate the immediate post-operative condition. Gap distributions along nine trabeculae-cement regions ranged from 0 to 50.4 μm (mean = 12 μm). Micro-motions ranged from 0.56 to 4.7 μm with a 1 MPa compressive load to the cement. Fluid-structure analysis between the trabeculae and the cement used idealised models with parametric evaluation of loading direction, gap closing fraction (GCF), gap thickness, loading frequency and fluid viscosity. The highest fluid shear stresses (926 Pa) along the trabecular surface were found for conditions with very thin and large GCFs, much larger than reported physiological levels (~1-5 Pa). A second fluid-structure model was created with a provision for bone resorption using a constitutive model with resorption velocity proportional to fluid shear rate. A lower cut-off was used, below which bone resorption would not occur (50 s(-1)). Results showed that there was initially high shear rates (>1000 s(-1)) that diminished after initial trabecular resorption. Resorption continued in high shear rate regions, resulting in a final shape with bone left deep in the cement layer, and is consistent with morphology found in post-mortem retrievals. Small gaps between the trabecular surface and the cement in the immediate post-operative state produce fluid flow conditions that appear to be supra-physiologic; these may cause fluid-induced lysis of trabeculae in the micro-interlock regions.

摘要

通过实验测试和计算建模来探究全膝关节置换胫骨部件中松质骨 - 骨水泥联锁区域的流体动力学。创建了近端胫骨的骨水泥 - 骨结构以模拟术后即刻的状况。沿九个松质骨 - 骨水泥区域的间隙分布范围为0至50.4μm(平均值 = 12μm)。在对骨水泥施加1MPa压缩载荷时,微动范围为0.56至4.7μm。松质骨与骨水泥之间的流固分析使用理想化模型,并对加载方向、间隙闭合分数(GCF)、间隙厚度、加载频率和流体粘度进行参数评估。在间隙非常薄且GCF很大的情况下,沿松质骨表面发现了最高的流体剪应力(926Pa),远高于报道的生理水平(约1 - 5Pa)。创建了第二个流固模型,该模型使用吸收速度与流体剪切速率成正比的本构模型来考虑骨吸收。使用了一个下限值,低于该值骨吸收不会发生(50 s⁻¹)。结果表明,最初存在高剪切速率(>1000 s⁻¹),在初始松质骨吸收后剪切速率降低。在高剪切速率区域骨吸收持续进行,导致最终形状是骨留在骨水泥层深处,这与尸体解剖取出物中发现的形态一致。术后即刻状态下松质骨表面与骨水泥之间的小间隙产生的流体流动条件似乎高于生理水平;这些可能会导致微联锁区域的松质骨发生流体诱导的溶解。

相似文献

1
Fluid-structure interactions in micro-interlocked regions of the cement-bone interface.
Comput Methods Biomech Biomed Engin. 2014;17(16):1809-20. doi: 10.1080/10255842.2013.767336. Epub 2013 Mar 12.
3
Similitude of cement-bone micromechanics in cemented rat and human knee replacement.
J Orthop Res. 2020 Jul;38(7):1529-1537. doi: 10.1002/jor.24661. Epub 2020 Mar 20.
4
Increased initial cement-bone interlock correlates with reduced total knee arthroplasty micro-motion following in vivo service.
J Biomech. 2014 Jul 18;47(10):2460-6. doi: 10.1016/j.jbiomech.2014.04.016. Epub 2014 Apr 16.
5
Loss of cement-bone interlock in retrieved tibial components from total knee arthroplasties.
Clin Orthop Relat Res. 2014 Jan;472(1):304-13. doi: 10.1007/s11999-013-3248-4. Epub 2013 Aug 24.
6
Strain shielding in trabecular bone at the tibial cement-bone interface.
J Mech Behav Biomed Mater. 2017 Feb;66:181-186. doi: 10.1016/j.jmbbm.2016.11.006. Epub 2016 Nov 10.
7
Experimental and computational micromechanics at the tibial cement-trabeculae interface.
J Biomech. 2016 Jun 14;49(9):1641-1648. doi: 10.1016/j.jbiomech.2016.03.054. Epub 2016 Apr 2.
8
A modelling approach demonstrating micromechanical changes in the tibial cemented interface due to in vivo service.
J Biomech. 2017 May 3;56:19-25. doi: 10.1016/j.jbiomech.2017.02.017. Epub 2017 Feb 27.
9
Trabecular resorption patterns of cement-bone interlock regions in total knee replacements.
J Orthop Res. 2017 Dec;35(12):2773-2780. doi: 10.1002/jor.23586. Epub 2017 May 15.
10
In vivo loss of cement-bone interlock reduces fixation strength in total knee arthroplasties.
J Orthop Res. 2014 Aug;32(8):1052-60. doi: 10.1002/jor.22634. Epub 2014 Apr 29.

引用本文的文献

1
Roles of inflammatory cell infiltrate in periprosthetic osteolysis.
Front Immunol. 2023 Dec 1;14:1310262. doi: 10.3389/fimmu.2023.1310262. eCollection 2023.
3
4
Progressive loss of implant fixation in a preclinical rat model of cemented knee arthroplasty.
J Orthop Res. 2021 Nov;39(11):2353-2362. doi: 10.1002/jor.24977. Epub 2021 Feb 24.
5
Similitude of cement-bone micromechanics in cemented rat and human knee replacement.
J Orthop Res. 2020 Jul;38(7):1529-1537. doi: 10.1002/jor.24661. Epub 2020 Mar 20.
7
Mechanically Induced Periprosthetic Osteolysis: A Systematic Review.
HSS J. 2019 Oct;15(3):286-296. doi: 10.1007/s11420-018-9641-5. Epub 2018 Nov 9.
8
Early Changes in Cement-Bone Fixation Using a Novel Rat Knee Replacement Model.
J Orthop Res. 2019 Oct;37(10):2163-2171. doi: 10.1002/jor.24390. Epub 2019 Jul 8.
9
GSK-3β inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation.
J Cell Physiol. 2018 Mar;233(3):2398-2408. doi: 10.1002/jcp.26111. Epub 2017 Sep 28.
10
Trabecular resorption patterns of cement-bone interlock regions in total knee replacements.
J Orthop Res. 2017 Dec;35(12):2773-2780. doi: 10.1002/jor.23586. Epub 2017 May 15.

本文引用的文献

1
Influence of time in-situ and implant type on fixation strength of cemented tibial trays - a post mortem retrieval analysis.
Clin Biomech (Bristol). 2012 Nov;27(9):929-35. doi: 10.1016/j.clinbiomech.2012.06.008. Epub 2012 Jul 20.
2
Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration.
J Biomech. 2012 Aug 31;45(13):2222-9. doi: 10.1016/j.jbiomech.2012.06.020. Epub 2012 Jul 9.
4
A new approach to quantify trabecular resorption adjacent to cemented knee arthroplasty.
J Biomech. 2012 Feb 23;45(4):711-5. doi: 10.1016/j.jbiomech.2011.12.008. Epub 2012 Jan 9.
6
The dog as a preclinical model to evaluate interface morphology and micro-motion in cemented total knee replacement.
Vet Comp Orthop Traumatol. 2012;25(1):1-10. doi: 10.3415/VCOT-11-01-0014. Epub 2011 Oct 26.
8
The role of pressurized fluid in subchondral bone cyst growth.
Bone. 2011 Oct;49(4):762-8. doi: 10.1016/j.bone.2011.06.028. Epub 2011 Jun 30.
9
The influence of tibial component fixation techniques on resorption of supporting bone stock after total knee replacement.
J Biomech. 2011 Mar 15;44(5):948-54. doi: 10.1016/j.jbiomech.2010.11.026. Epub 2011 Jan 14.
10
Fluid pressure and flow as a cause of bone resorption.
Acta Orthop. 2010 Aug;81(4):508-16. doi: 10.3109/17453674.2010.504610.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验