Suppr超能文献

用于增强超薄光伏器件光捕获的周期性纳米结构优化

Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics.

作者信息

Wang Peng, Menon Rajesh

机构信息

Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

Opt Express. 2013 Mar 11;21(5):6274-85. doi: 10.1364/OE.21.006274.

Abstract

Nanophotonic light trapping offers a promising approach to increased efficiency in thin-film organic photovoltaics. In this paper, an extension of the direct-binary-search algorithm was adopted to optimize dielectric nanophotonic structures for increasing power output of ultra-thin organic solar cells. The optimized devices were comprised of an absorber layer sandwiched between two patterned, transparent, conducting cladding layers. Light trapping in such devices with an absorber thickness of only 10nm increases power output by a factor of 16 when compared to a flat reference device. We further show that even under oblique illumination with angles ranging from 0 to 60 degrees, such a device could produce over 7 times more power compared to a flat reference device. Finally, we also performed a spectral and parametric analysis of the optimized design, and show that the increase is primarily due to guided-mode resonances. Our simulations indicate that this new design approach has the potential to significantly increase the performance of ultra-thin solar cells in realistic scenarios.

摘要

纳米光子光捕获为提高薄膜有机光伏电池的效率提供了一种很有前景的方法。在本文中,采用直接二进制搜索算法的扩展来优化介电纳米光子结构,以提高超薄有机太阳能电池的功率输出。优化后的器件由夹在两个图案化的透明导电包层之间的吸收层组成。与平面参考器件相比,在吸收层厚度仅为10nm的此类器件中,光捕获可使功率输出提高16倍。我们进一步表明,即使在0至60度的斜照明下,与平面参考器件相比,这种器件产生的功率也能高出7倍以上。最后,我们还对优化设计进行了光谱和参数分析,并表明这种增加主要是由于导模共振。我们的模拟表明,这种新的设计方法有可能在实际场景中显著提高超薄太阳能电池的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验