Suppr超能文献

一种新型的 P(1B)-型 Mn2+转运 ATP 酶是分枝杆菌中分泌蛋白金属化所必需的。

A novel P(1B)-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria.

机构信息

Department of Chemistry and Biochemistry Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.

出版信息

J Biol Chem. 2013 Apr 19;288(16):11334-47. doi: 10.1074/jbc.M112.448175. Epub 2013 Mar 12.

Abstract

Transition metals are central for bacterial virulence and host defense. P(1B)-ATPases are responsible for cytoplasmic metal efflux and play roles either in limiting cytosolic metal concentrations or in the maturation of secreted metalloproteins. The P(1B)-ATPase, CtpC, is required for Mycobacterium tuberculosis survival in a mouse model (Sassetti, C. M., and Rubin, E. J. (2003) Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. U.S.A. 100, 12989-12994). CtpC prevents Zn(2+) toxicity, suggesting a role in Zn(2+) export from the cytosol (Botella, H., Peyron, P., Levillain, F., Poincloux, R., Poquet, Y., Brandli, I., Wang, C., Tailleux, L., Tilleul, S., Charriere, G. M., Waddell, S. J., Foti, M., Lugo-Villarino, G., Gao, Q., Maridonneau-Parini, I., Butcher, P. D., Castagnoli, P. R., Gicquel, B., de Chastellièr, C., and Neyrolles, O. (2011) Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248-259). However, key metal-coordinating residues and the overall structure of CtpC are distinct from Zn(2+)-ATPases. We found that isolated CtpC has metal-dependent ATPase activity with a strong preference for Mn(2+) over Zn(2+). In vivo, CtpC is unable to complement Escherichia coli lacking a functional Zn(2+)-ATPase. Deletion of M. tuberculosis or Mycobacterium smegmatis ctpC leads to cytosolic Mn(2+) accumulation but no alterations in other metals levels. Whereas ctpC-deficient M. tuberculosis is sensitive to extracellular Zn(2+), the M. smegmatis mutant is not. Both ctpC mutants are sensitive to oxidative stress, which might explain the Zn(2+)-sensitive phenotype of the M. tuberculosis ctpC mutant. CtpC is a high affinity/slow turnover ATPase, suggesting a role in protein metallation. Consistent with this hypothesis, mutation of CtpC leads to a decrease of Mn(2+) bound to secreted proteins and of the activity of secreted Fe/Mn-superoxide dismutase, particularly in M. smegmatis. Alterations in the assembly of metalloenzymes involved in redox stress response might explain the sensitivity of M. tuberculosis ctpC mutants to oxidative stress and growth and persistence defects in mice infection models.

摘要

过渡金属是细菌毒力和宿主防御的核心。P(1B)-ATPases 负责细胞质金属流出,并在限制细胞溶质金属浓度或成熟分泌金属蛋白方面发挥作用。P(1B)-ATPase CtpC 是结核分枝杆菌在小鼠模型中存活所必需的(Sassetti,C.M.和 Rubin,E.J.(2003)感染过程中分枝杆菌存活的遗传要求。Proc. Natl. Acad. Sci. U.S.A. 100, 12989-12994)。CtpC 可防止 Zn(2+)毒性,表明其在 Zn(2+)从细胞质流出中的作用(Botella,H.,Peyron,P.,Levillain,F.,Poincloux,R.,Poquet,Y.,Brandli,I.,Wang,C.,Tailleux,L.,Tilleul,S.,Charrière,G.M.,Waddell,S.J.,Foti,M.,Lugo-Villarino,G.,Gao,Q.,Maridonneau-Parini,I.,Butcher,P.D.,Castagnoli,P.R.,Gicquel,B.,de Chastellièr,C.,和 Neyrolles,O.(2011)分枝杆菌 P1 型 ATPases介导人巨噬细胞对锌中毒的抗性。Cell Host Microbe 10, 248-259)。然而,关键的金属配位残基和 CtpC 的整体结构与 Zn(2+)-ATPases 不同。我们发现,分离的 CtpC 具有依赖金属的 ATPase活性,对 Mn(2+)的偏好强于 Zn(2+)。在体内,CtpC 无法补充缺乏功能 Zn(2+)-ATPase 的大肠杆菌。结核分枝杆菌或耻垢分枝杆菌 ctpC 的缺失导致细胞溶质 Mn(2+)积累,但其他金属水平没有变化。虽然 ctpC 缺陷型结核分枝杆菌对细胞外 Zn(2+)敏感,但耻垢分枝杆菌突变体则不然。两种 ctpC 突变体均对氧化应激敏感,这可能解释了结核分枝杆菌 ctpC 突变体对 Zn(2+)敏感的表型。CtpC 是一种高亲和力/慢周转率 ATPase,表明其在蛋白金属化中发挥作用。与这一假设一致,CtpC 的突变导致分泌蛋白结合的 Mn(2+)减少,分泌的 Fe/Mn-超氧化物歧化酶活性降低,特别是在耻垢分枝杆菌中。参与氧化应激反应的金属酶组装的改变可能解释了结核分枝杆菌 ctpC 突变体对氧化应激的敏感性以及在小鼠感染模型中生长和持续存在的缺陷。

相似文献

1
A novel P(1B)-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria.
J Biol Chem. 2013 Apr 19;288(16):11334-47. doi: 10.1074/jbc.M112.448175. Epub 2013 Mar 12.
3
Fine-tuning of Substrate Affinity Leads to Alternative Roles of Mycobacterium tuberculosis Fe2+-ATPases.
J Biol Chem. 2016 May 27;291(22):11529-39. doi: 10.1074/jbc.M116.718239. Epub 2016 Mar 28.
5
Role in metal homeostasis of CtpD, a Co²⁺ transporting P(1B4)-ATPase of Mycobacterium smegmatis.
Mol Microbiol. 2012 Jun;84(6):1139-49. doi: 10.1111/j.1365-2958.2012.08082.x. Epub 2012 May 17.
8
9
CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane.
Biometals. 2015 Aug;28(4):713-24. doi: 10.1007/s10534-015-9860-x. Epub 2015 May 13.
10
Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages.
Cell Host Microbe. 2011 Sep 15;10(3):248-59. doi: 10.1016/j.chom.2011.08.006.

引用本文的文献

1
Microbial metal physiology: ions to ecosystems.
Nat Rev Microbiol. 2025 Jul 25. doi: 10.1038/s41579-025-01213-7.
3
Role of Divalent Cations in Infections in Host-Pathogen Interaction.
Int J Mol Sci. 2024 Sep 10;25(18):9775. doi: 10.3390/ijms25189775.
4
Pathogenic genes implicated in sleep-related hypermotor epilepsy: a research progress update.
Front Neurol. 2024 Jun 20;15:1416648. doi: 10.3389/fneur.2024.1416648. eCollection 2024.
5
Metalation of Extracytoplasmic Proteins and Bacterial Cell Envelope Homeostasis.
Annu Rev Microbiol. 2024 Nov;78(1):83-102. doi: 10.1146/annurev-micro-041522-091507. Epub 2024 Nov 7.
6
Biological characteristics of manganese transporter MntP in .
mSphere. 2024 Jul 30;9(7):e0037724. doi: 10.1128/msphere.00377-24. Epub 2024 Jun 18.
7
P-type ATPase zinc transporter Rv3270 of enhances multi-drug efflux activity.
Microbiology (Reading). 2024 Feb;170(2). doi: 10.1099/mic.0.001441.
8
Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets.
Signal Transduct Target Ther. 2024 Jan 3;9(1):6. doi: 10.1038/s41392-023-01679-y.
9
Functional characterization of a TerC family protein of in manganese detoxification and virulence.
Appl Environ Microbiol. 2024 Jan 24;90(1):e0135023. doi: 10.1128/aem.01350-23. Epub 2023 Dec 12.
10
Why is manganese so valuable to bacterial pathogens?
Front Cell Infect Microbiol. 2023 Feb 3;13:943390. doi: 10.3389/fcimb.2023.943390. eCollection 2023.

本文引用的文献

1
Characterization of a cobalt-specific P(1B)-ATPase.
Biochemistry. 2012 Oct 9;51(40):7891-900. doi: 10.1021/bi3006708. Epub 2012 Sep 25.
2
Role in metal homeostasis of CtpD, a Co²⁺ transporting P(1B4)-ATPase of Mycobacterium smegmatis.
Mol Microbiol. 2012 Jun;84(6):1139-49. doi: 10.1111/j.1365-2958.2012.08082.x. Epub 2012 May 17.
3
A tetrahedral coordination of Zinc during transmembrane transport by P-type Zn(2+)-ATPases.
Biochim Biophys Acta. 2012 May;1818(5):1374-7. doi: 10.1016/j.bbamem.2012.02.020. Epub 2012 Feb 24.
4
Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations.
Chem Biol. 2012 Feb 24;19(2):218-27. doi: 10.1016/j.chembiol.2011.12.016.
5
Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence.
Biochemistry. 2011 Nov 22;50(46):9940-9. doi: 10.1021/bi201418k. Epub 2011 Oct 31.
6
Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages.
Cell Host Microbe. 2011 Sep 15;10(3):248-59. doi: 10.1016/j.chom.2011.08.006.
7
Metal sensing in Salmonella: implications for pathogenesis.
Adv Microb Physiol. 2011;58:175-232. doi: 10.1016/B978-0-12-381043-4.00005-2.
9
Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa.
Mol Microbiol. 2010 Dec;78(5):1246-58. doi: 10.1111/j.1365-2958.2010.07402.x. Epub 2010 Oct 6.
10
Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis.
Antioxid Redox Signal. 2011 Jul 1;15(1):175-89. doi: 10.1089/ars.2010.3682. Epub 2011 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验