Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
Biochemistry. 2011 Nov 22;50(46):9940-9. doi: 10.1021/bi201418k. Epub 2011 Oct 31.
P(1B)-type ATPases are polytopic membrane proteins that couple the hydrolysis of ATP to the efflux of cytoplasmic transition metals. This paper reviews recent progress in our understanding of the structure and function of these proteins in bacteria. These are members of the P-type superfamily of transport ATPases. Cu(+)-ATPases are the most frequently observed and best-characterized members of this group of transporters. However, bacterial genomes show diverse arrays of P(1B)-type ATPases with a range of substrates (Cu(+), Zn(2+), Co(2+)). Furthermore, because of the structural similarities among transitions metals, these proteins can also transport nonphysiological substrates (Cd(2+), Pb(2+), Au(+), Ag(+)). P(1B)-type ATPases have six or eight transmembrane segments (TM) with metal coordinating amino acids in three core TMs flanking the cytoplasmic domain responsible for ATP binding and hydrolysis. In addition, regulatory cytoplasmic metal binding domains are present in most P(1B)-type ATPases. Central to the transport mechanism is the binding of the uncomplexed metal to these proteins when cytoplasmic substrates are bound to chaperone and chelating molecules. Metal binding to regulatory sites is through a reversible metal exchange among chaperones and cytoplasmic metal binding domains. In contrast, the chaperone-mediated metal delivery to transport sites appears as a largely irreversible event. P(1B)-ATPases have two overarching physiological functions: to maintain cytoplasmic metal levels and to provide metals for the periplasmic assembly of metalloproteins. Recent studies have shown that both roles are critical for bacterial virulence, since P(1B)-ATPases appear key to overcome high phagosomal metal levels and are required for the assembly of periplasmic and secreted metalloproteins that are essential for survival in extreme oxidant environments.
P(1B)-型 ATP 酶是多跨膜蛋白,它们将 ATP 的水解与细胞质过渡金属的外排偶联起来。本文综述了近年来我们对这些蛋白质在细菌中的结构和功能的理解的最新进展。这些是 P 型超家族转运 ATP 酶的成员。Cu(+)-ATP 酶是该组转运蛋白中最常见和研究最充分的成员。然而,细菌基因组显示出多种多样的 P(1B)-型 ATP 酶,具有一系列不同的底物(Cu(+), Zn(2+), Co(2+))。此外,由于过渡金属之间的结构相似性,这些蛋白质也可以转运非生理底物(Cd(2+), Pb(2+), Au(+), Ag(+))。P(1B)-型 ATP 酶有六个或八个跨膜片段(TM),其中三个核心 TM 中有金属配位氨基酸,细胞质结构域负责 ATP 的结合和水解。此外,大多数 P(1B)-型 ATP 酶中都存在调节细胞质金属结合的结构域。转运机制的核心是当细胞质底物与伴侣和螯合分子结合时,未配位的金属与这些蛋白质结合。金属与调节位点的结合是通过伴侣蛋白和细胞质金属结合结构域之间的可逆金属交换来实现的。相比之下,伴侣介导的金属递送到转运位点似乎是一个很大程度上不可逆的事件。P(1B)-ATP 酶有两个主要的生理功能:维持细胞质金属水平和为周质金属蛋白的组装提供金属。最近的研究表明,这两个作用对细菌的毒力都至关重要,因为 P(1B)-ATP 酶似乎是克服吞噬体中高金属水平的关键,并需要组装周质和分泌的金属蛋白,这些蛋白对于在极端氧化环境中的生存是必不可少的。