Suppr超能文献

通过纤维束的异质性提高丝纤维强度。

Increasing silk fibre strength through heterogeneity of bundled fibrils.

机构信息

Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA.

出版信息

J R Soc Interface. 2013 Mar 13;10(82):20130148. doi: 10.1098/rsif.2013.0148. Print 2013 May 6.

Abstract

Can naturally arising disorder in biological materials be beneficial? Materials scientists are continuously attempting to replicate the exemplary performance of materials such as spider silk, with detailed techniques and assembly procedures. At the same time, a spider does not precisely machine silk-imaging indicates that its fibrils are heterogeneous and irregular in cross section. While past investigations either focused on the building material (e.g. the molecular scale protein sequence and behaviour) or on the ultimate structural component (e.g. silk threads and spider webs), the bundled structure of fibrils that compose spider threads has been frequently overlooked. Herein, I exploit a molecular dynamics-based coarse-grain model to construct a fully three-dimensional fibril bundle, with a length on the order of micrometres. I probe the mechanical behaviour of bundled silk fibrils with variable density of heterogenic protrusions or globules, ranging from ideally homogeneous to a saturated distribution. Subject to stretching, the model indicates that cooperativity is enhanced by contact through low-force deformation and shear 'locking' between globules, increasing shear stress transfer by up to 200 per cent. In effect, introduction of a random and disordered structure can serve to improve mechanical performance. Moreover, addition of globules allows a tuning of free volume, and thus the wettability of silk (with implications for supercontraction). These findings support the ability of silk to maintain near-molecular-level strength at the scale of silk threads, and the mechanism could be easily adopted as a strategy for synthetic fibres.

摘要

天然生物材料中的无序结构能带来好处吗?材料科学家们正在不断尝试复制蜘蛛丝等材料的出色性能,他们使用了详细的技术和组装程序。与此同时,蜘蛛在制造丝时并没有进行精确的机器加工——成像表明其原纤维在横截面上是不均匀和不规则的。虽然过去的研究要么集中在建筑材料上(例如分子级别的蛋白质序列和行为),要么集中在最终的结构组件上(例如丝线和蜘蛛网),但构成蜘蛛丝的原纤维的捆绑结构经常被忽视。在此,我利用基于分子动力学的粗粒模型构建了一个完全的三维原纤维束,长度在微米量级。我用具有不同密度的异形突起或球状物来探测捆绑丝原纤维的力学性能,从理想的均匀分布到饱和分布。在拉伸过程中,模型表明,通过低力变形和球状物之间的剪切“锁定”进行接触会增强协同作用,从而将剪切应力传递提高多达 200%。实际上,引入随机和无序结构可以提高机械性能。此外,添加球状物可以调节自由体积,从而调节丝的润湿性(对超收缩有影响)。这些发现支持了丝在丝线尺度上保持接近分子水平强度的能力,并且该机制可以很容易地被采用作为合成纤维的一种策略。

相似文献

1
Increasing silk fibre strength through heterogeneity of bundled fibrils.通过纤维束的异质性提高丝纤维强度。
J R Soc Interface. 2013 Mar 13;10(82):20130148. doi: 10.1098/rsif.2013.0148. Print 2013 May 6.
8
Stress-induced long-range ordering in spider silk.压力诱导的蜘蛛丝长程有序。
Sci Rep. 2017 Nov 10;7(1):15273. doi: 10.1038/s41598-017-15384-8.

引用本文的文献

1
Progress in Multiscale Modeling of Silk Materials.丝绸材料多尺度建模的研究进展。
Biomacromolecules. 2024 Nov 11;25(11):6987-7014. doi: 10.1021/acs.biomac.4c01122. Epub 2024 Oct 22.
4
Atomistic Simulation of Water Incorporation and Mobility in Silk Fibroin.丝素蛋白中水的掺入与流动性的原子模拟
ACS Omega. 2021 Dec 15;6(51):35494-35504. doi: 10.1021/acsomega.1c05019. eCollection 2021 Dec 28.
5
Structure of Animal Silks.动物丝的结构。
Methods Mol Biol. 2021;2347:3-15. doi: 10.1007/978-1-0716-1574-4_1.
6
Stretching of Silk Protein in Flow.丝蛋白在流动中的拉伸。
Molecules. 2021 Mar 16;26(6):1663. doi: 10.3390/molecules26061663.
10
Design, Fabrication, and Function of Silk-Based Nanomaterials.基于丝绸的纳米材料的设计、制造与功能
Adv Funct Mater. 2018 Dec 27;28(52). doi: 10.1002/adfm.201805305. Epub 2018 Nov 12.

本文引用的文献

1
The spinning processes for spider silk.蜘蛛丝的纺丝过程。
Soft Matter. 2006 May 26;2(6):448-451. doi: 10.1039/b601286h.
3
Spider silk: super material or thin fibre?蜘蛛丝:超级材料还是细纤维?
Adv Mater. 2013 Mar 6;25(9):1275-9. doi: 10.1002/adma.201204158. Epub 2012 Nov 26.
4
Nanostructure and nanomechanics of cement: polydisperse colloidal packing.水泥的纳米结构和纳米力学:多分散胶体的堆积。
Phys Rev Lett. 2012 Oct 12;109(15):155503. doi: 10.1103/PhysRevLett.109.155503. Epub 2012 Oct 10.
6
The role of capture spiral silk properties in the diversification of orb webs.捕捉螺旋丝特性在蛛网多样化中的作用。
J R Soc Interface. 2012 Dec 7;9(77):3240-8. doi: 10.1098/rsif.2012.0473. Epub 2012 Aug 15.
7
State of the art of carbon nanotube fibers: opportunities and challenges.碳纤维的最新发展:机遇与挑战。
Adv Mater. 2012 Apr 10;24(14):1805-33. doi: 10.1002/adma.201104672. Epub 2012 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验