Department of Civil and Environmental Engineering, Massachusetts Institute ofTechnology, Cambridge, Massachusetts 02139, USA.
Nano Lett. 2010 Jul 14;10(7):2626-34. doi: 10.1021/nl101341w.
Spider dragline silk is one of the strongest, most extensible and toughest biological materials known, exceeding the properties of many engineered materials including steel. Silk features a hierarchical architecture where highly organized, densely H-bonded beta-sheet nanocrystals are arranged within a semiamorphous protein matrix consisting of 3(1)-helices and beta-turn protein structures. By using a bottom-up molecular-based approach, here we develop the first spider silk mesoscale model, bridging the scales from Angstroms to tens to potentially hundreds of nanometers. We demonstrate that the specific nanoscale combination of a crystalline phase and a semiamorphous matrix is crucial to achieve the unique properties of silks. Our results reveal that the superior mechanical properties of spider silk can be explained solely by structural effects, where the geometric confinement of beta-sheet nanocrystals, combined with highly extensible semiamorphous domains, is the key to reach great strength and great toughness, despite the dominance of mechanically inferior chemical interactions such as H-bonding. Our model directly shows that semiamorphous regions govern the silk behavior at small deformation, unraveling first when silk is being stretched and leading to the large extensibility of the material. Conversely, beta-sheet nanocrystals play a significant role in defining the mechanical behavior of silk at large-deformation. In particular, the ultimate tensile strength of silk is controlled by the strength of beta-sheet nanocrystals, which is directly related to their size, where small beta-sheet nanocrystals are crucial to reach outstanding levels of strength and toughness. Our results and mechanistic insight directly explain recent experimental results, where it was shown that a significant change in the strength and toughness of silk can be achieved solely by tuning the size of beta-sheet nanocrystals. Our findings help to unveil the material design strategy that enables silk to achieve superior material performance despite simple and inferior material constituents. This concept could lead to a new materials design paradigm, where enhanced functionality is not achieved using complex building blocks but rather through the utilization of simple repetitive constitutive elements arranged in hierarchical structures from nano to macro.
蜘蛛牵引丝是已知的最强、最具延展性和最坚韧的生物材料之一,超过了许多工程材料的性能,包括钢。丝具有分层结构,高度组织化、密集 H 键合的β-折叠纳米晶体排列在由 3(1)-螺旋和β-转角蛋白结构组成的半结晶蛋白基质内。通过使用自下而上的基于分子的方法,我们在这里开发了第一个蜘蛛丝介观模型,从埃到数十到数百纳米的尺度上进行了桥接。我们证明了结晶相和半结晶基质的特定纳米尺度组合对于实现丝的独特性能至关重要。我们的结果表明,蜘蛛丝卓越的机械性能仅可以通过结构效应来解释,其中β-折叠纳米晶体的几何限制,结合具有高延展性的半结晶域,是达到高强度和高韧性的关键,尽管存在机械性能较差的化学相互作用(如氢键)占主导地位。我们的模型直接表明,半结晶区域控制着丝在小变形下的行为,当丝被拉伸时首先解开,导致材料具有很大的延展性。相反,β-折叠纳米晶体在大变形下对丝的力学行为起着重要作用。特别是,丝的极限拉伸强度由β-折叠纳米晶体的强度控制,这与它们的尺寸直接相关,其中小的β-折叠纳米晶体对于达到出色的强度和韧性至关重要。我们的结果和机械洞察力直接解释了最近的实验结果,其中表明仅通过调整β-折叠纳米晶体的尺寸,就可以实现丝的强度和韧性的显著变化。我们的发现有助于揭示材料设计策略,使丝能够在使用简单和较差的材料成分的情况下实现卓越的材料性能。这一概念可能会导致一种新的材料设计范例,其中增强的功能不是通过使用复杂的构建块来实现,而是通过利用简单的重复组成元素在从纳米到宏观的层次结构中进行排列来实现。