Suppr超能文献

高通量定量分析小鼠股骨的机械性能——一种用于大规模遗传研究的高度自动化方法。

High-throughput quantification of the mechanical competence of murine femora--a highly automated approach for large-scale genetic studies.

机构信息

Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.

出版信息

Bone. 2013 Jul;55(1):216-21. doi: 10.1016/j.bone.2013.02.015. Epub 2013 Feb 26.

Abstract

Animal models are widely used to gain insight into the role of genetics on bone structure and function. One of the main strategies to map the genes regulating specific traits is called quantitative trait loci (QTL) analysis, which generally requires a very large number of animals (often more than 1000) to reach statistical significance. QTL analysis for mechanical traits has been mainly based on experimental mechanical testing, which, in view of the large number of animals, is time consuming. Hence, the goal of the present work was to introduce an automated method for large-scale high-throughput quantification of the mechanical properties of murine femora. Specifically, our aims were, first, to develop and validate an automated method to quantify murine femoral bone stiffness. Second, to test its high-throughput capabilities on murine femora from a large genetic study, more specifically, femora from two growth hormone (GH) deficient inbred strains of mice (B6-lit/lit and C3.B6-lit/lit) and their first (F1) and second (F2) filial offsprings. Automated routines were developed to convert micro-computed tomography (micro-CT) images of femora into micro-finite element (micro-FE) models. The method was experimentally validated on femora from C57BL/6J and C3H/HeJ mice: for both inbred strains the micro-FE models closely matched the experimentally measured bone stiffness when using a single tissue modulus of 13.06 GPa. The mechanical analysis of the entire dataset (n=1990) took approximately 44 CPU hours on a supercomputer. In conclusion, our approach, in combination with QTL analysis could help to locate genes directly involved in controlling bone mechanical competence.

摘要

动物模型被广泛用于深入了解遗传因素对骨骼结构和功能的作用。一种用于绘制调节特定特征的基因图谱的主要策略是定量性状基因座(QTL)分析,这种方法通常需要非常大量的动物(通常超过 1000 只)才能达到统计学意义。针对机械特征的 QTL 分析主要基于实验力学测试,鉴于动物数量庞大,这种方法耗时耗力。因此,本研究的目的是引入一种用于大规模高通量量化鼠股骨机械性能的自动化方法。具体而言,我们的目标是:首先,开发并验证一种用于量化鼠股骨硬度的自动化方法;其次,在一项大型遗传研究中测试其高通量能力,更具体地说,研究两种生长激素(GH)缺乏的近交系小鼠(B6-lit/lit 和 C3.B6-lit/lit)及其第一代(F1)和第二代(F2)后代的股骨。开发了自动化程序将股骨的微计算机断层扫描(micro-CT)图像转换为微有限元(micro-FE)模型。该方法在 C57BL/6J 和 C3H/HeJ 小鼠的股骨上进行了实验验证:对于这两个近交系,当使用 13.06 GPa 的单一组织模量时,micro-FE 模型与实验测量的骨硬度非常吻合。在超级计算机上,对整个数据集(n=1990)的力学分析大约需要 44 个 CPU 小时。总之,我们的方法结合 QTL 分析可以帮助定位直接参与控制骨骼机械性能的基因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验