Suppr超能文献

小分子热休克蛋白 IbpB 通过分层激活其多种类型的底物结合残基,在活细胞中充当强大的伴侣蛋白。

Small heat shock protein IbpB acts as a robust chaperone in living cells by hierarchically activating its multi-type substrate-binding residues.

机构信息

From the State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Center for Protein Sciences, Peking University, Beijing 100871, China.

出版信息

J Biol Chem. 2013 Apr 26;288(17):11897-906. doi: 10.1074/jbc.M113.450437. Epub 2013 Mar 13.

Abstract

As ubiquitous molecular chaperones, small heat shock proteins (sHSPs) are crucial for protein homeostasis. It is not clear why sHSPs are able to bind a wide spectrum of non-native substrate proteins and how such binding is enhanced by heat shock. Here, by utilizing a genetically incorporated photo-cross-linker (p-benzoyl-l-phenylalanine), we systematically characterized the substrate-binding residues in IbpB (a sHSP from Escherichia coli) in living cells over a wide spectrum of temperatures (from 20 to 50 °C). A total of 20 and 48 residues were identified at normal and heat shock temperatures, respectively. They are not necessarily hydrophobic and can be classified into three types: types I and II were activated at low and normal temperatures, respectively, and type III mediated oligomerization at low temperature but switched to substrate binding at heat shock temperature. In addition, substrate binding of IbpB in living cells began at temperatures as low as 25 °C and was further enhanced upon temperature elevation. Together, these in vivo data provide novel structural insights into the wide substrate spectrum of sHSPs and suggest that sHSP is able to hierarchically activate its multi-type substrate-binding residues and thus act as a robust chaperone in cells under fluctuating growth conditions.

摘要

作为普遍存在的分子伴侣,小分子热休克蛋白(sHSPs)对于蛋白质的稳态至关重要。目前尚不清楚 sHSP 为何能够结合广泛的非天然底物蛋白,以及这种结合如何在热休克的情况下得到增强。在这里,我们通过利用一种遗传上整合的光交联剂(p-苯甲酰-l-苯丙氨酸),在从 20 到 50°C 的广泛温度范围内,在活细胞中系统地研究了 IbpB(来自大肠杆菌的 sHSP)的底物结合残基。在正常和热休克温度下分别鉴定出 20 和 48 个残基。它们不一定是疏水性的,可以分为三种类型:I 型和 II 型分别在低温和正常温度下被激活,III 型在低温下介导寡聚化,但在热休克温度下切换到底物结合。此外,IbpB 在活细胞中的底物结合在低至 25°C 的温度下开始,并在温度升高时进一步增强。总之,这些体内数据为 sHSP 广泛的底物谱提供了新的结构见解,并表明 sHSP 能够分层激活其多类型底物结合残基,从而在不断变化的生长条件下作为细胞中强大的伴侣发挥作用。

相似文献

6
IbpB-bound substrate release in living cells as revealed by unnatural amino acid-mediated photo-crosslinking.
FEBS Open Bio. 2020 Oct;10(10):2081-2088. doi: 10.1002/2211-5463.12957. Epub 2020 Sep 1.
7
Duplicate divergence of two bacterial small heat shock proteins reduces the demand for Hsp70 in refolding of substrates.
PLoS Genet. 2019 Oct 25;15(10):e1008479. doi: 10.1371/journal.pgen.1008479. eCollection 2019 Oct.
8
Multilevel structural characteristics for the natural substrate proteins of bacterial small heat shock proteins.
Protein Sci. 2014 Feb;23(2):229-37. doi: 10.1002/pro.2404. Epub 2013 Dec 16.

引用本文的文献

1
Cancer Drug Delivery Systems Using Bacterial Toxin Translocation Mechanisms.
Bioengineering (Basel). 2023 Jul 7;10(7):813. doi: 10.3390/bioengineering10070813.
2
Membrane translocation process revealed by in situ structures of type II secretion system secretins.
Nat Commun. 2023 Jul 7;14(1):4025. doi: 10.1038/s41467-023-39583-2.
4
The Small Ones Matter-sHsps in the Bacterial Chaperone Network.
Front Mol Biosci. 2021 May 13;8:666893. doi: 10.3389/fmolb.2021.666893. eCollection 2021.
5
IbpB-bound substrate release in living cells as revealed by unnatural amino acid-mediated photo-crosslinking.
FEBS Open Bio. 2020 Oct;10(10):2081-2088. doi: 10.1002/2211-5463.12957. Epub 2020 Sep 1.
6
Structural and functional properties of proteins interacting with small heat shock proteins.
Cell Stress Chaperones. 2020 Jul;25(4):629-637. doi: 10.1007/s12192-020-01097-x. Epub 2020 Apr 20.
7
Small but mighty: a functional look at bacterial sHSPs.
Cell Stress Chaperones. 2020 Jul;25(4):593-600. doi: 10.1007/s12192-020-01094-0. Epub 2020 Apr 16.
8
Spatial Organization of Proteasome Aggregates in the Regulation of Proteasome Homeostasis.
Front Mol Biosci. 2020 Jan 9;6:150. doi: 10.3389/fmolb.2019.00150. eCollection 2019.
10
A prion-like domain in Hsp42 drives chaperone-facilitated aggregation of misfolded proteins.
J Cell Biol. 2018 Apr 2;217(4):1269-1285. doi: 10.1083/jcb.201708116. Epub 2018 Jan 23.

本文引用的文献

2
Conditional disorder in chaperone action.
Trends Biochem Sci. 2012 Dec;37(12):517-25. doi: 10.1016/j.tibs.2012.08.006. Epub 2012 Sep 24.
3
Order out of disorder: working cycle of an intrinsically unfolded chaperone.
Cell. 2012 Mar 2;148(5):947-57. doi: 10.1016/j.cell.2012.01.045.
5
A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance.
Nat Chem Biol. 2011 Sep 4;7(10):671-7. doi: 10.1038/nchembio.644.
6
Molecular chaperones in protein folding and proteostasis.
Nature. 2011 Jul 20;475(7356):324-32. doi: 10.1038/nature10317.
8
Small heat shock proteins and protein-misfolding diseases.
Curr Pharm Biotechnol. 2010 Feb;11(2):146-57. doi: 10.2174/138920110790909669.
9
Quaternary dynamics and plasticity underlie small heat shock protein chaperone function.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2007-12. doi: 10.1073/pnas.0910126107. Epub 2010 Jan 19.
10
Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction.
Biochem J. 2009 Dec 14;425(1):245-55. doi: 10.1042/BJ20090907.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验