Suppr超能文献

从混乱中有序:一种固有无规则伴侣的工作循环。

Order out of disorder: working cycle of an intrinsically unfolded chaperone.

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Cell. 2012 Mar 2;148(5):947-57. doi: 10.1016/j.cell.2012.01.045.

Abstract

The redox-regulated chaperone Hsp33 protects organisms against oxidative stress that leads to protein unfolding. Activation of Hsp33 is triggered by the oxidative unfolding of its own redox-sensor domain, making Hsp33 a member of a recently discovered class of chaperones that require partial unfolding for full chaperone activity. Here we address the long-standing question of how chaperones recognize client proteins. We show that Hsp33 uses its own intrinsically disordered regions to discriminate between unfolded and partially structured folding intermediates. Binding to secondary structure elements in client proteins stabilizes Hsp33's intrinsically disordered regions, and this stabilization appears to mediate Hsp33's high affinity for structured folding intermediates. Return to nonstress conditions reduces Hsp33's disulfide bonds, which then significantly destabilizes the bound client proteins and in doing so converts them into less-structured, folding-competent client proteins of ATP-dependent foldases. We propose a model in which energy-independent chaperones use internal order-to-disorder transitions to control substrate binding and release.

摘要

氧化还原调控伴侣蛋白 Hsp33 可保护生物体免受导致蛋白质展开的氧化应激。Hsp33 的激活是由其自身氧化还原传感器结构域的展开引发的,这使其成为最近发现的一类伴侣蛋白的成员,这类伴侣蛋白需要部分展开才能发挥完全的伴侣活性。在这里,我们解决了长期存在的关于伴侣蛋白如何识别客户蛋白的问题。我们表明,Hsp33 使用其自身的固有无序区域来区分展开和部分结构折叠中间体。与客户蛋白中的二级结构元件结合稳定了 Hsp33 的固有无序区域,这种稳定似乎介导了 Hsp33 对结构折叠中间体的高亲和力。回到非应激条件下会减少 Hsp33 的二硫键,这会显著破坏结合的客户蛋白,并将其转化为具有较低结构、折叠能力的 ATP 依赖的折叠酶的客户蛋白。我们提出了一个模型,其中能量非依赖性伴侣蛋白使用内部有序到无序的转变来控制底物的结合和释放。

相似文献

1
Order out of disorder: working cycle of an intrinsically unfolded chaperone.
Cell. 2012 Mar 2;148(5):947-57. doi: 10.1016/j.cell.2012.01.045.
2
Protein unfolding as a switch from self-recognition to high-affinity client binding.
Nat Commun. 2016 Jan 20;7:10357. doi: 10.1038/ncomms10357.
3
A Role of Metastable Regions and Their Connectivity in the Inactivation of a Redox-Regulated Chaperone and Its Inter-Chaperone Crosstalk.
Antioxid Redox Signal. 2017 Nov 20;27(15):1252-1267. doi: 10.1089/ars.2016.6900. Epub 2017 Apr 10.
4
Activation of the redox-regulated molecular chaperone Hsp33--a two-step mechanism.
Structure. 2001 May 9;9(5):377-87. doi: 10.1016/s0969-2126(01)00599-8.
5
Redox-regulated molecular chaperones.
Cell Mol Life Sci. 2002 Oct;59(10):1624-31. doi: 10.1007/pl00012489.
7
Activation of the redox-regulated chaperone Hsp33 by domain unfolding.
J Biol Chem. 2004 May 7;279(19):20529-38. doi: 10.1074/jbc.M401764200. Epub 2004 Mar 15.
8
The redox-switch domain of Hsp33 functions as dual stress sensor.
Nat Struct Mol Biol. 2007 Jun;14(6):556-63. doi: 10.1038/nsmb1244. Epub 2007 May 21.
9
Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation in Vibrio cholerae.
Mol Microbiol. 2012 Mar;83(5):981-91. doi: 10.1111/j.1365-2958.2012.07982.x. Epub 2012 Feb 8.
10
Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone.
J Biol Chem. 2010 Apr 9;285(15):11243-51. doi: 10.1074/jbc.M109.084350. Epub 2010 Feb 5.

引用本文的文献

1
MIA40 circumvents the folding constraints imposed by TRIAP1 function.
J Biol Chem. 2025 Mar;301(3):108268. doi: 10.1016/j.jbc.2025.108268. Epub 2025 Feb 3.
3
Cellular oxidants and the proteostasis network: balance between activation and destruction.
Trends Biochem Sci. 2024 Sep;49(9):761-774. doi: 10.1016/j.tibs.2024.07.001. Epub 2024 Aug 21.
4
AIUPred: combining energy estimation with deep learning for the enhanced prediction of protein disorder.
Nucleic Acids Res. 2024 Jul 5;52(W1):W176-W181. doi: 10.1093/nar/gkae385.
6
Human Small Heat Shock Protein B8 Inhibits Protein Aggregation without Affecting the Native Folding Process.
J Am Chem Soc. 2023 Jul 19;145(28):15188-15196. doi: 10.1021/jacs.3c02022. Epub 2023 Jul 6.
9
Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT.
Cell. 2022 Dec 8;185(25):4770-4787.e20. doi: 10.1016/j.cell.2022.11.014.

本文引用的文献

1
Cellular strategies for controlling protein aggregation.
Nat Rev Mol Cell Biol. 2010 Nov;11(11):777-88. doi: 10.1038/nrm2993. Epub 2010 Oct 14.
2
Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone.
J Biol Chem. 2010 Apr 9;285(15):11243-51. doi: 10.1074/jbc.M109.084350. Epub 2010 Feb 5.
3
Protein refolding by pH-triggered chaperone binding and release.
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1071-6. doi: 10.1073/pnas.0911610107. Epub 2009 Dec 31.
4
Thermodynamic analysis of a molecular chaperone binding to unfolded protein substrates.
Biochemistry. 2010 Feb 16;49(6):1346-53. doi: 10.1021/bi902010t.
5
Substrate binding site flexibility of the small heat shock protein molecular chaperones.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15604-9. doi: 10.1073/pnas.0902177106. Epub 2009 Aug 26.
6
Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5557-62. doi: 10.1073/pnas.0811811106. Epub 2009 Mar 24.
7
Predicting peptide structures in native proteins from physical simulations of fragments.
PLoS Comput Biol. 2009 Feb;5(2):e1000281. doi: 10.1371/journal.pcbi.1000281. Epub 2009 Feb 6.
8
Bleach activates a redox-regulated chaperone by oxidative protein unfolding.
Cell. 2008 Nov 14;135(4):691-701. doi: 10.1016/j.cell.2008.09.024.
9
Dynamics of well-folded and natively disordered proteins in solution: a time-of-flight neutron scattering study.
Eur Biophys J. 2008 Jun;37(5):573-82. doi: 10.1007/s00249-008-0266-3. Epub 2008 Jan 29.
10
H/D exchange- and mass spectrometry-based strategy for the thermodynamic analysis of protein-ligand binding.
Anal Chem. 2007 Aug 1;79(15):5869-77. doi: 10.1021/ac0700777. Epub 2007 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验