Suppr超能文献

Cftr 控制斑马鱼胆管囊泡的管腔扩张和功能。

Cftr controls lumen expansion and function of Kupffer's vesicle in zebrafish.

机构信息

Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Development. 2013 Apr;140(8):1703-12. doi: 10.1242/dev.091819. Epub 2013 Mar 13.

Abstract

Regulated fluid secretion is crucial for the function of most organs. In vertebrates, the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) is a master regulator of fluid secretion. Although the biophysical properties of CFTR have been well characterized in vitro, little is known about its in vivo role during development. Here, we investigated the function of Cftr during zebrafish development by generating several cftr mutant alleles using TAL effector nucleases. We found that loss of cftr function leads to organ laterality defects. In zebrafish, left-right (LR) asymmetry requires cilia-driven fluid flow within the lumen of Kupffer's vesicle (KV). Using live imaging we found that KV morphogenesis is disrupted in cftr mutants. Loss of Cftr-mediated fluid secretion impairs KV lumen expansion leading to defects in organ laterality. Using bacterial artificial chromosome recombineering, we generated transgenic fish expressing functional Cftr fusion proteins with fluorescent tags under the control of the cftr promoter. The transgenes completely rescued the cftr mutant phenotype. Live imaging of these transgenic lines showed that Cftr is localized to the apical membrane of the epithelial cells in KV during lumen formation. Pharmacological stimulation of Cftr-dependent fluid secretion led to an expansion of the KV lumen. Conversely, inhibition of ion gradient formation impaired KV lumen inflation. Interestingly, cilia formation and motility in KV were not affected, suggesting that fluid secretion and flow are independently controlled in KV. These findings uncover a new role for cftr in KV morphogenesis and function during zebrafish development.

摘要

受调控的液体分泌对于大多数器官的功能至关重要。在脊椎动物中,氯离子通道囊性纤维化跨膜电导调节因子(CFTR)是液体分泌的主要调节因子。尽管 CFTR 的生物物理特性在体外已经得到了很好的描述,但对于其在体内发育过程中的作用却知之甚少。在这里,我们通过使用 TAL 效应物核酸酶生成几个 cftr 突变等位基因,研究了 Cftr 在斑马鱼发育过程中的功能。我们发现 cftr 功能的丧失会导致器官偏侧性缺陷。在斑马鱼中,左右(LR)不对称性需要纤毛驱动的 KV 管腔内的液体流动。通过活体成像,我们发现 cftr 突变体的 KV 形态发生被破坏。Cftr 介导的液体分泌的丧失会损害 KV 管腔的扩张,导致器官偏侧性缺陷。通过细菌人工染色体重组,我们生成了表达具有荧光标签的功能性 Cftr 融合蛋白的转基因鱼,这些蛋白受 cftr 启动子的控制。这些转基因完全挽救了 cftr 突变体的表型。对这些转基因系的活体成像显示,Cftr 在 KV 管腔形成过程中定位于上皮细胞的顶膜。Cftr 依赖性液体分泌的药理学刺激导致 KV 管腔的扩张。相反,离子梯度形成的抑制会损害 KV 管腔的充气。有趣的是,KV 中的纤毛形成和运动没有受到影响,这表明液体分泌和流动在 KV 中是独立控制的。这些发现揭示了 cftr 在斑马鱼发育过程中 KV 形态发生和功能中的新作用。

相似文献

1
Cftr controls lumen expansion and function of Kupffer's vesicle in zebrafish.
Development. 2013 Apr;140(8):1703-12. doi: 10.1242/dev.091819. Epub 2013 Mar 13.
2
Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality.
PLoS One. 2017 Aug 3;12(8):e0182047. doi: 10.1371/journal.pone.0182047. eCollection 2017.
3
The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer's vesicle in zebrafish.
Development. 2011 Jan;138(1):45-54. doi: 10.1242/dev.052985. Epub 2010 Nov 23.
4
Rab8, Rab11, and Rab35 coordinate lumen and cilia formation during zebrafish left-right organizer development.
PLoS Genet. 2023 May 15;19(5):e1010765. doi: 10.1371/journal.pgen.1010765. eCollection 2023 May.
5
Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish.
Dev Biol. 2007 Oct 15;310(2):196-210. doi: 10.1016/j.ydbio.2007.05.039. Epub 2007 Jun 4.
6
Kupffer's vesicle size threshold for robust left-right patterning of the zebrafish embryo.
Dev Dyn. 2016 Jan;245(1):22-33. doi: 10.1002/dvdy.24355. Epub 2015 Nov 3.
7
Regional cell shape changes control form and function of Kupffer's vesicle in the zebrafish embryo.
Dev Biol. 2012 Oct 1;370(1):52-62. doi: 10.1016/j.ydbio.2012.07.019. Epub 2012 Jul 26.
9
Loss of cftr function leads to pancreatic destruction in larval zebrafish.
Dev Biol. 2015 Mar 15;399(2):237-48. doi: 10.1016/j.ydbio.2014.12.034. Epub 2015 Jan 13.

引用本文的文献

1
Specific mitotic events drive left-right organizer development.
Development. 2025 May 15;152(10). doi: 10.1242/dev.204687. Epub 2025 May 19.
2
The dynamics of tubulogenesis in development and disease.
Development. 2025 Feb 1;152(3). doi: 10.1242/dev.202820. Epub 2025 Feb 17.
3
Bioelectric stimulation controls tissue shape and size.
Nat Commun. 2024 Apr 5;15(1):2938. doi: 10.1038/s41467-024-47079-w.
5
Rab8, Rab11, and Rab35 coordinate lumen and cilia formation during zebrafish left-right organizer development.
PLoS Genet. 2023 May 15;19(5):e1010765. doi: 10.1371/journal.pgen.1010765. eCollection 2023 May.
6
Multicellular rosettes link mesenchymal-epithelial transition to radial intercalation in the mouse axial mesoderm.
Dev Cell. 2023 Jun 5;58(11):933-950.e5. doi: 10.1016/j.devcel.2023.03.018. Epub 2023 Apr 19.
7
Understanding laterality disorders and the left-right organizer: Insights from zebrafish.
Front Cell Dev Biol. 2022 Dec 23;10:1035513. doi: 10.3389/fcell.2022.1035513. eCollection 2022.
9
PHLPP1 regulates CFTR activity and lumen expansion through AMPK.
Development. 2022 Oct 15;149(20). doi: 10.1242/dev.200955. Epub 2022 Aug 23.
10
Morphogenetic Roles of Hydrostatic Pressure in Animal Development.
Annu Rev Cell Dev Biol. 2022 Oct 6;38:375-394. doi: 10.1146/annurev-cellbio-120320-033250. Epub 2022 Jul 8.

本文引用的文献

1
Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets.
J Clin Invest. 2012 Oct;122(10):3755-68. doi: 10.1172/JCI60610. Epub 2012 Sep 17.
2
A luminal glycoprotein drives dose-dependent diameter expansion of the Drosophila melanogaster hindgut tube.
PLoS Genet. 2012;8(8):e1002850. doi: 10.1371/journal.pgen.1002850. Epub 2012 Aug 2.
3
TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W117-22. doi: 10.1093/nar/gks608. Epub 2012 Jun 12.
4
Zebrafish assays of ciliopathies.
Methods Cell Biol. 2011;105:257-72. doi: 10.1016/B978-0-12-381320-6.00011-4.
5
Heritable gene targeting in zebrafish using customized TALENs.
Nat Biotechnol. 2011 Aug 5;29(8):699-700. doi: 10.1038/nbt.1939.
6
Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting.
Nucleic Acids Res. 2011 Jul;39(12):e82. doi: 10.1093/nar/gkr218. Epub 2011 Apr 14.
7
Regulation of endoderm formation and left-right asymmetry by miR-92 during early zebrafish development.
Development. 2011 May;138(9):1817-26. doi: 10.1242/dev.056697. Epub 2011 Mar 29.
9
A TALE nuclease architecture for efficient genome editing.
Nat Biotechnol. 2011 Feb;29(2):143-8. doi: 10.1038/nbt.1755. Epub 2010 Dec 22.
10
Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels.
Curr Biol. 2010 Nov 23;20(22):2003-9. doi: 10.1016/j.cub.2010.09.061. Epub 2010 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验