Suppr超能文献

区域细胞形状变化控制斑马鱼胚胎中 Kupffer 囊的形态和功能。

Regional cell shape changes control form and function of Kupffer's vesicle in the zebrafish embryo.

机构信息

Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.

出版信息

Dev Biol. 2012 Oct 1;370(1):52-62. doi: 10.1016/j.ydbio.2012.07.019. Epub 2012 Jul 26.

Abstract

Cilia-generated fluid flow in an 'organ of asymmetry' is critical for establishing the left-right body axis in several vertebrate embryos. However, the cell biology underlying how motile cilia produce coordinated flow and asymmetric signals is not well defined. In the zebrafish organ of asymmetry-called Kupffer's vesicle (KV)-ciliated cells are asymmetrically positioned along the anterior-posterior axis such that more cilia are placed in the anterior region. We previously demonstrated that Rho kinase 2b (Rock2b) is required for anteroposterior asymmetry and fluid flow in KV, but it remained unclear how the distribution of ciliated cells becomes asymmetric during KV development. Here, we identify a morphogenetic process we refer to as 'KV remodeling' that transforms initial symmetry in KV architecture into anteroposterior asymmetry. Live imaging of KV cells revealed region-specific cell shape changes that mediate tight packing of ciliated cells into the anterior pole. Mathematical modeling indicated that different interfacial tensions in anterior and posterior KV cells are involved in KV remodeling. Interfering with non-muscle myosin II (referred to as Myosin II) activity, which modulates cellular interfacial tensions and is regulated by Rock proteins, disrupted KV cell shape changes and the anteroposterior distribution of KV cilia. Similar defects were observed in Rock2b depleted embryos. Furthermore, inhibiting Myosin II at specific stages of KV development perturbed asymmetric flow and left-right asymmetry. These results indicate that regional cell shape changes control the development of anteroposterior asymmetry in KV, which is necessary to generate coordinated asymmetric fluid flow and left-right patterning of the embryo.

摘要

纤毛产生的流动在几个脊椎动物胚胎的“不对称器官”中对于建立左右身体轴至关重要。然而,关于运动纤毛如何产生协调的流动和不对称信号的细胞生物学还没有很好地定义。在斑马鱼的不对称器官——称为 Kupffer 泡(KV)中,纤毛细胞沿着前后轴不对称排列,使得更多的纤毛位于前区。我们之前证明了 Rho 激酶 2b(Rock2b)是 KV 中前后不对称和流动所必需的,但仍然不清楚在 KV 发育过程中纤毛细胞的分布如何变得不对称。在这里,我们确定了一个我们称之为“KV 重塑”的形态发生过程,该过程将 KV 结构中的初始对称性转化为前后不对称性。对 KV 细胞的实时成像显示了特定区域的细胞形状变化,这些变化介导了纤毛细胞紧密地聚集在前极。数学模型表明,前区和后区 KV 细胞中不同的界面张力参与了 KV 重塑。干扰非肌肉肌球蛋白 II(称为肌球蛋白 II)的活性,它调节细胞界面张力,并受 Rock 蛋白调节,会破坏 KV 细胞形状的变化和 KV 纤毛的前后分布。在 Rock2b 耗尽的胚胎中也观察到了类似的缺陷。此外,在 KV 发育的特定阶段抑制肌球蛋白 II 会干扰不对称流动和左右不对称。这些结果表明,区域细胞形状变化控制着 KV 前后不对称的发育,这对于产生协调的不对称流动和胚胎的左右模式至关重要。

相似文献

1
Regional cell shape changes control form and function of Kupffer's vesicle in the zebrafish embryo.
Dev Biol. 2012 Oct 1;370(1):52-62. doi: 10.1016/j.ydbio.2012.07.019. Epub 2012 Jul 26.
2
The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer's vesicle in zebrafish.
Development. 2011 Jan;138(1):45-54. doi: 10.1242/dev.052985. Epub 2010 Nov 23.
5
The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish.
Dev Biol. 2015 Nov 1;407(1):115-30. doi: 10.1016/j.ydbio.2015.08.002. Epub 2015 Aug 5.
7
Kupffer's vesicle size threshold for robust left-right patterning of the zebrafish embryo.
Dev Dyn. 2016 Jan;245(1):22-33. doi: 10.1002/dvdy.24355. Epub 2015 Nov 3.
8
Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish.
Dev Biol. 2007 Oct 15;310(2):196-210. doi: 10.1016/j.ydbio.2007.05.039. Epub 2007 Jun 4.
10
Lethal giant larvae 2 regulates development of the ciliated organ Kupffer's vesicle.
Development. 2013 Apr;140(7):1550-9. doi: 10.1242/dev.087130.

引用本文的文献

1
Dynamic forces drive cell and organ morphology changes during embryonic development.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2418111122. doi: 10.1073/pnas.2418111122. Epub 2025 Jul 15.
2
Dynamical forces drive organ morphology changes during embryonic development.
bioRxiv. 2024 Jul 17:2024.07.13.603371. doi: 10.1101/2024.07.13.603371.
3
Bioelectric stimulation controls tissue shape and size.
Nat Commun. 2024 Apr 5;15(1):2938. doi: 10.1038/s41467-024-47079-w.
4
Shape-driven confluent rigidity transition in curved biological tissues.
Biophys J. 2023 Nov 7;122(21):4264-4273. doi: 10.1016/j.bpj.2023.10.001. Epub 2023 Oct 5.
5
Cellular segregation in cocultures is driven by differential adhesion and contractility on distinct timescales.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2213186120. doi: 10.1073/pnas.2213186120. Epub 2023 Apr 3.
6
Understanding laterality disorders and the left-right organizer: Insights from zebrafish.
Front Cell Dev Biol. 2022 Dec 23;10:1035513. doi: 10.3389/fcell.2022.1035513. eCollection 2022.
7
Structures and functions of cilia during vertebrate embryo development.
Mol Reprod Dev. 2022 Dec;89(12):579-596. doi: 10.1002/mrd.23650. Epub 2022 Nov 11.
8
Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis.
Small. 2022 Feb;18(6):e2103466. doi: 10.1002/smll.202103466. Epub 2021 Nov 26.
9
3D viscoelastic drag forces contribute to cell shape changes during organogenesis in the zebrafish embryo.
Cells Dev. 2021 Dec;168:203718. doi: 10.1016/j.cdev.2021.203718. Epub 2021 Jul 14.
10
Pkd2 Affects Cilia Length and Impacts LR Flow Dynamics and .
Front Cell Dev Biol. 2021 Apr 1;9:624531. doi: 10.3389/fcell.2021.624531. eCollection 2021.

本文引用的文献

1
Cortical forces in cell shape changes and tissue morphogenesis.
Curr Top Dev Biol. 2011;95:93-144. doi: 10.1016/B978-0-12-385065-2.00004-9.
2
Role of myosin light chain kinase and myosin light chain phosphatase in the resistance arterial myogenic response to intravascular pressure.
Arch Biochem Biophys. 2011 Jun 15;510(2):160-73. doi: 10.1016/j.abb.2011.02.024. Epub 2011 Mar 21.
3
Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning.
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2915-20. doi: 10.1073/pnas.1019645108. Epub 2011 Jan 31.
4
The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer's vesicle in zebrafish.
Development. 2011 Jan;138(1):45-54. doi: 10.1242/dev.052985. Epub 2010 Nov 23.
5
The cell adhesion-associated protein Git2 regulates morphogenetic movements during zebrafish embryonic development.
Dev Biol. 2011 Jan 15;349(2):225-37. doi: 10.1016/j.ydbio.2010.10.027. Epub 2010 Oct 26.
6
Planar cell polarity signalling regulates cell adhesion properties in progenitors of the zebrafish laterality organ.
Development. 2010 Oct;137(20):3459-68. doi: 10.1242/dev.049981. Epub 2010 Sep 15.
7
Coaction of intercellular adhesion and cortical tension specifies tissue surface tension.
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12517-22. doi: 10.1073/pnas.1003743107. Epub 2010 Jun 28.
9
Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning.
Nature. 2010 Jul 15;466(7304):378-82. doi: 10.1038/nature09129. Epub 2010 Jun 20.
10
Left-right asymmetric morphogenesis of the anterior midgut depends on the activation of a non-muscle myosin II in Drosophila.
Dev Biol. 2010 Aug 15;344(2):693-706. doi: 10.1016/j.ydbio.2010.05.501. Epub 2010 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验