Sanchez Angel Matias, Flamini Marina Ines, Genazzani Andrea Riccardo, Simoncini Tommaso
Molecular and Cellular Gynecological Endocrinology Laboratory, Department of Experimental and Clinical Medicine, University of Pisa, Via Roma, 67, 56100, Pisa, Italy.
Mol Endocrinol. 2013 Apr;27(4):693-702. doi: 10.1210/me.2012-1278. Epub 2013 Mar 13.
Sex steroids are important regulators of neuronal cell morphology, and this is critical for gender differences in brain function and dysfunction. Neuronal morphology is controlled by multiprotein complexes including moesin (a member of the ezrin/radixin/moesin family), focal adhesion kinase (FAK), or the Wiskott-Aldrich syndrome protein-family verprolin homologous (WAVE1) protein, controlling dynamic remodeling of the cytoskeleton and cell membrane. We investigated the actions of natural progesterone (P) and of the synthetic progestin medroxyprogesterone acetate (MPA) on actin remodeling, focal adhesion complex formation, and actin branching in rat cortical neurons. Treatment with P and, to a lesser extent, MPA, increases the number and density of dendritic spines. P increases the phosphorylation of moesin, FAK, and WAVE1, and their redistribution toward cell membrane sites where spines are formed. Signaling to moesin is achieved by PR via a Gα/Gβ-dependent signaling to the small GTPase Ras homolog gene family, member A and its related kinase, Rho-associated kinase-2. In parallel, WAVE1 recruitment is triggered by a Gαi/Gβ-dependent signaling of PR to c-Src, FAK, and Rac1 GTPase. Rac1 recruits cyclin-dependent kinase-5, which phosphorylates WAVE1. Silencing of moesin, FAK, or WAVE1 abrogates the increase in dendritic spines induced by progesterone. In all applications, MPA is found to act similar to P, albeit with a lower efficacy. In conclusion, our findings indicate that the control of actin polymerization and branching and focal adhesion complex formation via moesin, FAK, and WAVE1 is a key function of progesterone receptor in neurons, which may be relevant for the regulation of dendritic spine turnover and neuronal plasticity.
性类固醇是神经元细胞形态的重要调节因子,这对于脑功能和功能障碍中的性别差异至关重要。神经元形态由多蛋白复合物控制,包括埃兹蛋白(ezrin)/根蛋白(radixin)/埃莫蛋白(moesin)家族成员埃莫蛋白、粘着斑激酶(FAK)或威斯科特-奥尔德里奇综合征蛋白家族维普洛林同源物(WAVE1)蛋白,这些复合物控制细胞骨架和细胞膜的动态重塑。我们研究了天然孕酮(P)和合成孕激素醋酸甲羟孕酮(MPA)对大鼠皮质神经元肌动蛋白重塑、粘着斑复合物形成和肌动蛋白分支的作用。用P处理以及在较小程度上用MPA处理,会增加树突棘的数量和密度。P增加了埃莫蛋白、FAK和WAVE1的磷酸化,并使它们重新分布到形成树突棘的细胞膜部位。孕激素受体(PR)通过依赖Gα/Gβ的信号传导至小GTP酶Ras同源基因家族成员A及其相关激酶Rho相关激酶-2来实现对埃莫蛋白的信号传导。同时,PR对c-Src、FAK和Rac1 GTP酶的依赖Gαi/Gβ的信号传导触发了WAVE1的募集。Rac1募集细胞周期蛋白依赖性激酶-5,该激酶使WAVE1磷酸化。沉默埃莫蛋白、FAK或WAVE1可消除孕酮诱导的树突棘增加。在所有应用中,发现MPA的作用与P相似,尽管效力较低。总之,我们的研究结果表明,通过埃莫蛋白、FAK和WAVE1对肌动蛋白聚合、分支和粘着斑复合物形成的控制是神经元中孕酮受体的关键功能,这可能与树突棘更新和神经元可塑性的调节有关。