Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States.
Chem Res Toxicol. 2013 Apr 15;26(4):555-63. doi: 10.1021/tx300483z. Epub 2013 Apr 2.
There is substantial interest in small molecules that can be used to detect or kill the hypoxic (low oxygen) cells found in solid tumors. Nitroaryl moieties are useful components in the design of hypoxia-selective imaging agents and prodrugs because one-electron reductases can convert the nitroaryl group to nitroso, hydroxylamino, and amino metabolites selectively under low oxygen conditions. Here, we describe the in vitro, cell free metabolism of a pro-fluorescent substrate, 6-nitroquinoline (1) under both aerobic and hypoxic conditions. Both LC-MS and fluorescence spectroscopic analyses provided evidence that the one-electron reducing enzyme system, xanthine/xanthine oxidase, converted the nonfluorescent parent compound 1 to the known fluorophore 6-aminoquinoline (2) selectively under hypoxic conditions. The presumed intermediate in this reduction process, 6-hydroxylaminoquinoline (6), is fluorescent and can be efficiently converted by xanthine/xanthine oxidase to 2 only under hypoxic conditions. This finding provides evidence for multiple oxygen-sensitive steps in the enzymatic conversion of nitroaryl compounds to the corresponding amino derivatives. In a side reaction that is separate from the bioreductive metabolism of 1, xanthine oxidase converted 1 to 6-nitroquinolin-2(1H)-one (5). These studies may enable the use of 1 as a fluorescent substrate for the detection and profiling of one-electron reductases in cell culture or biopsy samples. In addition, the compound may find use as a fluorogenic probe for the detection of hypoxia in tumor models. The occurrence of side products such as 5 in the enzymatic bioreduction of 1 underscores the importance of metabolite identification in the characterization of hypoxia-selective probes and drugs that employ nitroaryl units as oxygen sensors.
人们对能够用于检测或杀死实体瘤中缺氧(低氧)细胞的小分子化合物有着浓厚的兴趣。硝基本部分是设计缺氧选择性成像剂和前药的有用组成部分,因为单电子还原剂可以在低氧条件下选择性地将硝基本部分转化为亚硝基、羟氨基和氨基代谢物。在这里,我们描述了在有氧和缺氧条件下,前荧光底物 6-硝基喹啉(1)的体外无细胞代谢情况。LC-MS 和荧光光谱分析都提供了证据,表明单电子还原酶系统,黄嘌呤/黄嘌呤氧化酶,在缺氧条件下,将非荧光母体化合物 1 选择性地转化为已知的荧光团 6-氨基喹啉(2)。在这个还原过程中,假定的中间产物 6-羟基氨基喹啉(6)是荧光的,并且只能在缺氧条件下被黄嘌呤/黄嘌呤氧化酶有效地转化为 2。这一发现为硝基芳族化合物转化为相应的氨基衍生物的酶促转化过程中的多个氧敏感性步骤提供了证据。在一个与 1 的生物还原代谢分开的副反应中,黄嘌呤氧化酶将 1 转化为 6-硝基喹啉-2(1H)-酮(5)。这些研究可以使 1 被用作荧光底物,用于检测和分析细胞培养或活检样品中的单电子还原酶。此外,该化合物可用于检测肿瘤模型中缺氧的荧光探针。在 1 的酶促生物还原过程中出现副产物 5 等情况,突出了在表征使用硝基本部分作为氧传感器的缺氧选择性探针和药物时进行代谢物鉴定的重要性。