Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada 1 514 398 7729 ; +1 514 398 7594 ;
Expert Opin Drug Discov. 2007 Oct;2(s1):S41-52. doi: 10.1517/17460441.2.S1.S41.
Ivermectin (IVM) has transformed nematode parasite control in veterinary medicine and the control of some nematode infections in humans, such as onchocerciasais, lymphatic filariasis in Africa and strongyloidiasis. Unfortunately, IVM resistance is now a serious problem for parasite control in livestock and there is a concern about resistance development and spread in nematode parasites of humans. IVM is believed to act by opening glutamate-gated chloride channels and GABA-gated channels in invertebrate neurons or muscle cells, leading to hyperpolarisation of the cells and to an inhibitory paralysis. However, in the filarial nematodes, it is not altogether clear that the effect of IVM is confined to these actions or even whether these are the most important. Alterations in some ligand-gated ion channel (LGIC) receptor subunits may play a role in the mechanisms of IVM resistance in some nematodes, but the evidence that changes in LGICs are the most important cause of IVM resistance in nematodes is far from clear. What is evident is that IVM is an excellent substrate for some ATP-binding cassette transporters, IVM selects for changes in expression levels of ABC transporters, such as P-glycoproteins, and that altered levels of some ABC transporters contribute to IVM resistance. In addition, there is growing evidence that IVM selects on β-tubulin, at least in some nematodes. Based on these various mechanisms, which contribute to IVM resistance, it may become possible to develop panels of molecular markers for IVM resistance in different nematode parasites. In order to stimulate the development of such markers, an international Consortium for Anthelmintic Resistance SNPs (CARS) has been developed to help coordinate marker development, advance our knowledge of helminth biology and possibly assist with the development of new anthelmintic molecules.
伊维菌素(IVM)已经彻底改变了兽医领域对线虫寄生虫的控制,以及对人体一些线虫感染的控制,例如盘尾丝虫病、非洲淋巴丝虫病和类圆线虫病。不幸的是,IVM 耐药性现在是家畜寄生虫控制的一个严重问题,人们担心这种耐药性会在人类的线虫寄生虫中发展和传播。据信,IVM 通过打开无脊椎动物神经元或肌肉细胞中的谷氨酸门控氯通道和 GABA 门控通道来发挥作用,导致细胞超极化和抑制性麻痹。然而,在丝虫中,尚不完全清楚 IVM 的作用仅限于这些作用,甚至这些作用是否是最重要的。一些配体门控离子通道(LGIC)受体亚基的改变可能在一些线虫中 IVM 耐药性的机制中起作用,但是改变 LGIC 是线虫中 IVM 耐药性的最重要原因的证据还远不清楚。显而易见的是,IVM 是一些 ATP 结合盒转运蛋白的极好底物,IVM 选择改变 ABC 转运蛋白(如 P 糖蛋白)的表达水平,并且改变某些 ABC 转运蛋白的水平有助于 IVM 耐药性。此外,越来越多的证据表明 IVM 至少在某些线虫中选择β-微管蛋白。基于这些导致 IVM 耐药性的各种机制,有可能为不同的线虫寄生虫开发 IVM 耐药性的分子标记物。为了刺激此类标记物的开发,已经开发了一个抗蠕虫药物耐药性 SNP 国际联合会(CARS),以帮助协调标记物的开发,增进我们对蠕虫生物学的认识,并可能有助于开发新的驱虫药物。