Suppr超能文献

一种采用计算机模拟进行神经生理学教学的结构化探究方法。

A structured-inquiry approach to teaching neurophysiology using computer simulation.

作者信息

Crisp Kevin M

机构信息

Biology Department, Saint Olaf College, Northfield, MN 55057.

出版信息

J Undergrad Neurosci Educ. 2012 Fall;11(1):A132-8. Epub 2012 Oct 15.

Abstract

Computer simulation is a valuable tool for teaching the fundamentals of neurophysiology in undergraduate laboratories where time and equipment limitations restrict the amount of course content that can be delivered through hands-on interaction. However, students often find such exercises to be tedious and unstimulating. In an effort to engage students in the use of computational modeling while developing a deeper understanding of neurophysiology, an attempt was made to use an educational neurosimulation environment as the basis for a novel, inquiry-based research project. During the semester, students in the class wrote a research proposal, used the Neurodynamix II simulator to generate a large data set, analyzed their modeling results statistically, and presented their findings at the Midbrains Neuroscience Consortium undergraduate poster session. Learning was assessed in the form of a series of short term papers and two 10-min in-class writing responses to the open-ended question, "How do ion channels influence neuronal firing?", which they completed on weeks 6 and 15 of the semester. Students' answers to this question showed a deeper understanding of neuronal excitability after the project; their term papers revealed evidence of critical thinking about computational modeling and neuronal excitability. Suggestions for the adaptation of this structured-inquiry approach into shorter term lab experiences are discussed.

摘要

在本科实验室中,由于时间和设备限制,通过实际操作所能传授的课程内容数量有限,计算机模拟是教授神经生理学基础知识的宝贵工具。然而,学生们常常觉得这类练习枯燥乏味、缺乏趣味性。为了让学生参与计算建模的使用,同时加深对神经生理学的理解,我们尝试将一个教育性神经模拟环境作为一个新颖的、基于探究的研究项目的基础。在这一学期中,班上的学生撰写了一份研究提案,使用Neurodynamix II模拟器生成大量数据集,对建模结果进行统计分析,并在中脑神经科学联盟本科生海报展示会上展示他们的研究结果。通过一系列短期论文以及针对开放性问题“离子通道如何影响神经元放电?”的两次10分钟课堂写作回应来评估学习情况,这两个问题是他们在学期的第6周和第15周完成的。学生们对这个问题的回答表明,在项目结束后他们对神经元兴奋性有了更深入的理解;他们的学期论文显示出对计算建模和神经元兴奋性进行批判性思考的证据。本文还讨论了将这种结构化探究方法应用于更短期实验室体验的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0edb/3592748/1d1dbf17c891/june-11-132f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验